denise.c 236 KB
Newer Older
Tilman Steinweg's avatar
Tilman Steinweg committed
1
/*-----------------------------------------------------------------------------------------
Florian Wittkamp's avatar
Florian Wittkamp committed
2
 * Copyright (C) 2016  For the list of authors, see file AUTHORS.
Tilman Steinweg's avatar
Tilman Steinweg committed
3
4
 *
 * This file is part of DENISE.
5
 *
Tilman Steinweg's avatar
Tilman Steinweg committed
6
7
8
 * DENISE is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, version 2.0 of the License only.
9
 *
Tilman Steinweg's avatar
Tilman Steinweg committed
10
11
12
13
 * DENISE is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
14
 *
Tilman Steinweg's avatar
Tilman Steinweg committed
15
16
 * You should have received a copy of the GNU General Public License
 * along with DENISE. See file COPYING and/or <http://www.gnu.org/licenses/gpl-2.0.html>.
17
 -----------------------------------------------------------------------------------------*/
Tilman Steinweg's avatar
Tilman Steinweg committed
18
19

/* ----------------------------------------------------------------------
20
21
22
23
24
25
26
27
28
 * This is program DENISE.
 * subwavelength DEtail resolving Nonlinear Iterative SEismic inversion
 *
 * If you use this code for your own research please cite at least one article
 * written by the developers of the package, e.g.
 * D. K�hn. Time domain 2D elastic full waveform tomography. PhD Thesis, Kiel
 * University, 2011.
 *
 *  ----------------------------------------------------------------------*/
Tilman Steinweg's avatar
Tilman Steinweg committed
29
30
31
32
33
34
35
36
37
38


#include "fd.h"           /* general include file for viscoelastic FD programs */

#include "globvar.h"      /* definition of global variables  */
#include "cseife.h"

#include "stfinv/stfinv.h" /* libstfinv - inversion for source time function */

int main(int argc, char **argv){
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    /* variables in main */
    int ns, nseismograms=0, nt, nd, fdo3, j, i, ii, jj, shotid, recid, k, nc, iter, h, infoout, SHOTINC, TIMEWIN, test_eps, lq, iq, jq, hin, hin1, s=0;
    int NTDTINV, nxny, nxnyi, imat, imat1, imat2, IDXI, IDYI, hi, NTST, NTSTI, partest;
    int lsnap, nsnap=0, lsamp=0, buffsize, invtime, invtimer, sws, swstestshot, snapseis, snapseis1, PML;
    int ntr=0, ntr_loc=0, ntr_glob=0, nsrc=0, nsrc_loc=0, nsrc_glob=0, ishot, irec, nshots=0, nshots1, Lcount, itest, Lcountsum, itestshot;
    
    float pum, ppim, ppim1, ppim2, thetaf, thetab, e33, e33b, e11, e11b, muss, lamss;
    float memdyn, memmodel, memseismograms, membuffer, memtotal, dngn, fphi, sum, avggrad, beta, betan, betaz, betaLog, betaVp, betaVs, betarho, eps_scale, L2old;
    float fac1, fac2, wavefor, waverecipro, dump, dump1, epsilon, gradsign, mun, eps1, gradplastiter, gradglastiter, gradclastiter, betar, sig_max, sig_max1;
    float signL1, RMS, opteps_vp, opteps_vs, opteps_rho, Vs, Vp, Vp_avg, C_vp, Vs_avg, C_vs, Cd, rho_avg, C_rho, Vs_sum, Vp_sum, rho_sum, Zp, Zs;
    float freqshift, dfreqshift, memfwt, memfwt1, memfwtdata;
    char *buff_addr, ext[10], *fileinp;
    char wave_forward[225], wave_recipro[225], wave_conv[225], jac[225], jac2[225], jacsum[225], dwavelet[225], vyf[STRING_SIZE];
    
    double time1, time2, time3, time4, time5, time6, time7, time8,
    time_av_v_update=0.0, time_av_s_update=0.0, time_av_v_exchange=0.0,
    time_av_s_exchange=0.0, time_av_timestep=0.0;
    
    float L2, L2sum, L2_all_shots, L2sum_all_shots, *L2t, alphanomsum, alphanom, alphadenomsum, alphadenom, scaleamp ,sdummy, lamr;
    int sum_killed_traces=0, sum_killed_traces_testshots=0, killed_traces=0, killed_traces_testshots=0;
    int *ptr_killed_traces=&killed_traces, *ptr_killed_traces_testshots=&killed_traces_testshots;
    
    float energy, energy_sum, energy_all_shots, energy_sum_all_shots;
    
    // Pointer for dynamic wavefields:
    float  **  psxx, **  psxy, **  psyy, **  psxz, **  psyz, **psp, ** ux, ** uy, ** uz, ** uxy, ** uyx, ** Vp0, ** uttx, ** utty, ** Vs0, ** Rho0;
    float  **  pvx, **  pvy, **  pvz, **waveconv, **waveconv_lam, **waveconv_mu, **waveconv_rho, **waveconv_rho_s, **waveconv_u, **waveconvtmp, **wcpart, **wavejac,**waveconv_rho_s_z,**waveconv_u_z,**waveconv_rho_z;
    float **waveconv_shot, **waveconv_u_shot, **waveconv_rho_shot, **waveconv_u_shot_z, **waveconv_rho_shot_z;
    float  **  pvxp1, **  pvyp1, **  pvzp1, **  pvxm1, **  pvym1, **  pvzm1;
    float ** gradg, ** gradp,** gradg_rho, ** gradp_rho, ** gradg_u, ** gradp_u, ** gradp_u_z,** gradp_rho_z;
    float  **  prho,**  prhonp1, **prip=NULL, **prjp=NULL, **pripnp1=NULL, **prjpnp1=NULL, **  ppi, **  pu, **  punp1, **  puipjp, **  ppinp1;
    float  **  vpmat, ***forward_prop_x, ***forward_prop_y, ***forward_prop_rho_x, ***forward_prop_u, ***forward_prop_rho_y, ***forward_prop_p;
    
    float ***forward_prop_z_xz,***forward_prop_z_yz,***forward_prop_rho_z,**waveconv_mu_z;
    float ** uxz, ** uyz;
    
    float  ** sectionvx=NULL, ** sectionvy=NULL, ** sectionvz=NULL, ** sectionp=NULL, ** sectionpnp1=NULL,
    ** sectioncurl=NULL, ** sectiondiv=NULL, ** sectionvxdata=NULL, ** sectionvydata=NULL, ** sectionvzdata=NULL, ** sectionvxdiff=NULL, ** sectionvzdiff=NULL, ** sectionvxdiffold=NULL, ** sectionvydiffold=NULL, ** sectionvzdiffold=NULL,** sectionpdata=NULL, ** sectionpdiff=NULL, ** sectionpdiffold=NULL,
    ** sectionvydiff=NULL, ** sectionpn=NULL, ** sectionread=NULL, ** sectionvy_conv=NULL, ** sectionvy_obs=NULL, ** sectionvx_conv=NULL,** sectionvx_obs=NULL, ** sectionvz_conv=NULL,** sectionvz_obs=NULL,
    ** sectionp_conv=NULL,** sectionp_obs=NULL, * source_time_function=NULL;
    float  **  absorb_coeff, ** taper_coeff, * epst1, * epst2,  * epst3, * picked_times;
80
    float  ** srcpos=NULL, **srcpos_loc=NULL, ** srcpos1=NULL, **srcpos_loc_back=NULL, ** signals=NULL,** signals_SH=NULL, ** signals_rec=NULL, *hc=NULL;
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    int   ** recpos=NULL, ** recpos_loc=NULL;
    /*int   ** tracekill=NULL, TRKILL, DTRKILL;*/
    int * DTINV_help;
    
    float ** bufferlef_to_rig,  ** bufferrig_to_lef, ** buffertop_to_bot, ** bufferbot_to_top;
    
    /* PML variables */
    float * d_x, * K_x, * alpha_prime_x, * a_x, * b_x, * d_x_half, * K_x_half, * alpha_prime_x_half, * a_x_half, * b_x_half, * d_y, * K_y, * alpha_prime_y, * a_y, * b_y, * d_y_half, * K_y_half, * alpha_prime_y_half, * a_y_half, * b_y_half;
    float ** psi_sxx_x, ** psi_syy_y, ** psi_sxy_y, ** psi_sxy_x, ** psi_vxx, ** psi_vyy, ** psi_vxy, ** psi_vyx, ** psi_vxxs;
    float ** psi_sxz_x, ** psi_syz_y, ** psi_vzx, ** psi_vzy;
    
    /* Variables for viscoelastic modeling */
    float **ptaus=NULL, **ptaup=NULL, *etaip=NULL, *etajm=NULL, *peta=NULL, **ptausipjp=NULL, **fipjp=NULL, ***dip=NULL, *bip=NULL, *bjm=NULL;
    float *cip=NULL, *cjm=NULL, ***d=NULL, ***e=NULL, ***pr=NULL, ***pp=NULL, ***pq=NULL, **f=NULL, **g=NULL;
95
    float ***pt=NULL, ***po=NULL; // SH Simulation
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    
    /* Variables for step length calculation */
    int step1, step2, step3=0, itests, iteste, stepmax, countstep;
    float scalefac;
    
    /* Variables for Pseudo-Hessian calculation */
    int RECINC, ntr1;
    float * jac_rho, * jac_u, * jac_lam_x, * jac_lam_y;
    float * temp_TS, * temp_TS1, * temp_TS2, * temp_TS3, * temp_TS4, * temp_TS5, * temp_conv, * temp_conv1, * temp_conv2;
    float temp_hess, temp_hess_lambda, temp_hess_mu, mulamratio;
    float ** hessian, ** hessian_u, ** hessian_rho, **hessian_shot, **hessian_u_shot, **hessian_rho_shot;
    int QUELLART_OLD;
    
    /* Variables for L-BFGS */
110
    int LBFGS=0,LBFGS_NPAR=3;
111
112
    int LBFGS_iter_start=1;
    float LBFGS_L2_temp;
113
    float **s_LBFGS,**y_LBFGS, *rho_LBFGS;
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    int l=0;
    int w=0;
    int m=0;
    
    /* Check wolfe */
    int steplength_search=0;
    int FWI_run=1;
    int gradient_optimization=1;
    float alpha_SL_min=0, alpha_SL_max=0, alpha_SL=1.0;
    float alpha_SL_old;
    float ** waveconv_old,** waveconv_u_old,** waveconv_rho_old;
    float ** waveconv_up,** waveconv_u_up,** waveconv_rho_up;
    float L2_SL_old=0, L2_SL_new=0;
    float c1_SL=1e-4, c2_SL=0.9;
    int wolfe_status;
    int wolfe_sum_FWI=0;
    int wolfe_found_lower_L2=0;
    float alpha_SL_FS;
    float L2_SL_FS;
    int use_wolfe_failsafe=0;
    int wolfe_SLS_failed=0;
    
    /* Variables for energy weighted gradient */
    float ** Ws, **Wr, **We;
    float ** Ws_SH, **Wr_SH, **We_SH;
    float ** We_sum,** We_sum_SH;
    float We_sum_max1;
    float We_max_SH,We_max;
    
    int * recswitch=NULL;
    float ** fulldata=NULL, ** fulldata_vx=NULL, ** fulldata_vy=NULL, ** fulldata_vz=NULL, ** fulldata_p=NULL, ** fulldata_curl=NULL, ** fulldata_div=NULL;
    
    /* different modelling types */
    int mod_type=0;
    
    /*vector for abort criterion*/
    float * L2_hist=NULL;
    
    /* help variable for MIN_ITER */
    int min_iter_help=0;
    
    float ** workflow=NULL;
    int workflow_lines;
157
    char workflow_header[STRING_SIZE];
158
159
    int change_wavetype_iter=-10; /* Have to be inialized negative */
    int wavetype_start; /* We need this due to MPI Comm */
160
161
    int buf1=0, buf2=0;
    WORKFLOW_STAGE=1;
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    
    /* variable for time domain filtering */
    float FC;
    float *FC_EXT=NULL;
    int nfrq=0;
    int FREQ_NR=1;
    /* declaration of variables for trace killing */
    int ** kill_tmp;
    FILE *ftracekill;
    
    FILE *fprec, *FP2, *FP3, *FP4, *FP5, *FPL2, *FP6, *FP7;
    
    /* General parameters */
    int nt_out;
    
    MPI_Request *req_send, *req_rec;
    MPI_Status  *send_statuses, *rec_statuses;
    
    /* Initialize MPI environment */
    MPI_Init(&argc,&argv);
    MPI_Comm_size(MPI_COMM_WORLD,&NP);
    MPI_Comm_rank(MPI_COMM_WORLD,&MYID);
    
    setvbuf(stdout, NULL, _IONBF, 0);
    
    if (MYID == 0){
        time1=MPI_Wtime();
        clock();
    }
    
    /* print program name, version etc to stdout*/
    if (MYID == 0) info(stdout);
    
    /* read parameters from parameter-file (stdin) */
    fileinp=argv[1];
    FP=fopen(fileinp,"r");
    if(FP==NULL) {
        if (MYID == 0){
            printf("\n==================================================================\n");
            printf(" Cannot open Denise input file %s \n",fileinp);
            printf("\n==================================================================\n\n");
            err(" --- ");
        }
    }
    
    /* read json formatted input file */
    read_par_json(stdout,fileinp);
    
    exchange_par();
    
    wavetype_start=WAVETYPE;
    if (MYID == 0) note(stdout);
    
    
    /* open log-file (each PE is using different file) */
    /*	fp=stdout; */
    sprintf(ext,".%i",MYID);
    strcat(LOG_FILE,ext);
    
    /* If Verbose==0, no PE will write a log file */
    if(!VERBOSE) sprintf(LOG_FILE,"/dev/null");
    
Florian Wittkamp's avatar
Florian Wittkamp committed
224
    if ((MYID==0)) FP=stdout;
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    else {
        FP=fopen(LOG_FILE,"w");
    }
    fprintf(FP," This is the log-file generated by PE %d \n\n",MYID);
    
    /* domain decomposition */
    initproc();
    
    NT=iround(TIME/DT);  	  /* number of timesteps */
    /*ns=iround(NT/NDT);*/           /* number of samples per trace */
    ns=NT;	/* in a FWI one has to keep all samples of the forward modeled data
             at the receiver positions to calculate the adjoint sources and to do
             the backpropagation; look at function saveseis_glob.c to see that every
             NDT sample for the forward modeled wavefield is written to su files*/
    lsnap=iround(TSNAP1/DT);      /* first snapshot at this timestep */
    lsamp=NDT;
    
    
    /* output of parameters to log-file or stdout */
    if (MYID==0) write_par(FP);
    
    
    /* NXG, NYG denote size of the entire (global) grid */
    NXG=NX;
    NYG=NY;
    
    /* In the following, NX and NY denote size of the local grid ! */
    NX = IENDX;
    NY = IENDY;
    
    
    if (SEISMO){
        recpos=receiver(FP, &ntr);
        recswitch = ivector(1,ntr);
        recpos_loc = splitrec(recpos,&ntr_loc, ntr, recswitch);
        ntr_glob=ntr;
        ntr=ntr_loc;
    }
    
    /* memory allocation for abort criterion*/
    L2_hist = vector(1,1000);
    
    if(INV_STF) fulldata = matrix(1,ntr_glob,1,NT);
    
    /* estimate memory requirement of the variables in megabytes*/
    
    switch (SEISMO){
        case 1 : /* particle velocities only */
            nseismograms=2;
            break;
        case 2 : /* pressure only */
            nseismograms=1;
            break;
        case 3 : /* curl and div only */
            nseismograms=2;
            break;
        case 4 : /* everything */
            nseismograms=5;
            break;
        case 5 : /* everything except curl and div */
            nseismograms=3;
            break;
    }
    
    /* use only every DTINV time sample for the inversion */
    /*DTINV=15;*/
    DTINV_help=ivector(1,NT);
    NTDTINV=ceil((float)NT/(float)DTINV);		/* round towards next higher integer value */
    
    /* save every IDXI and IDYI spatial point during the forward modelling */
    IDXI=1;
    IDYI=1;
    
    /*allocate memory for dynamic, static and buffer arrays */
    fac1=(NX+FDORDER)*(NY+FDORDER);
    fac2=sizeof(float)*pow(2.0,-20.0);
    
    nd = FDORDER/2 + 1;
    
    // decide how much space for exchange is needed
    switch (WAVETYPE) {
        case 1:
            fdo3 = 2*nd;
            break;
        case 2:
            fdo3 = 1*nd;
            break;
        case 3:
            fdo3 = 3*nd;
            break;
        default:
            fdo3 = 2*nd;
            break;
    }
    
    
    if (L){
        memdyn=(5.0+3.0*(float)L)*fac1*fac2;
        memmodel=(12.0+3.0*(float)L)*fac1*fac2;
        
    } else {
        memdyn=5.0*fac1*fac2;
        memmodel=6.0*fac1*fac2;
    }
    memseismograms=nseismograms*ntr*ns*fac2;
    
    memfwt=5.0*((NX/IDXI)+FDORDER)*((NY/IDYI)+FDORDER)*NTDTINV*fac2;
    memfwt1=20.0*NX*NY*fac2;
    memfwtdata=6.0*ntr*ns*fac2;
    
    membuffer=2.0*fdo3*(NY+NX)*fac2;
    buffsize=2.0*2.0*fdo3*(NX+NY)*sizeof(MPI_FLOAT);
    memtotal=memdyn+memmodel+memseismograms+memfwt+memfwt1+memfwtdata+membuffer+(buffsize*pow(2.0,-20.0));
    
    
    if (MYID==0 && WAVETYPE == 1){
        fprintf(FP,"\n **Message from main (printed by PE %d):\n",MYID);
        fprintf(FP," Size of local grids: NX=%d \t NY=%d\n",NX,NY);
        fprintf(FP," Each process is now trying to allocate memory for:\n");
        fprintf(FP," Dynamic variables: \t\t %6.2f MB\n", memdyn);
        fprintf(FP," Static variables: \t\t %6.2f MB\n", memmodel);
        fprintf(FP," Seismograms: \t\t\t %6.2f MB\n", memseismograms);
        fprintf(FP," Buffer arrays for grid exchange:%6.2f MB\n", membuffer);
        fprintf(FP," Network Buffer for MPI_Bsend: \t %6.2f MB\n", buffsize*pow(2.0,-20.0));
        fprintf(FP," ------------------------------------------------ \n");
        fprintf(FP," Total memory required: \t %6.2f MB.\n\n", memtotal);
    }
    
    
    /* allocate buffer for buffering messages */
    buff_addr=malloc(buffsize);
    if (!buff_addr) err("allocation failure for buffer for MPI_Bsend !");
    MPI_Buffer_attach(buff_addr,buffsize);
    
    /* allocation for request and status arrays */
    req_send=(MPI_Request *)malloc(REQUEST_COUNT*sizeof(MPI_Request));
    req_rec=(MPI_Request *)malloc(REQUEST_COUNT*sizeof(MPI_Request));
    send_statuses=(MPI_Status *)malloc(REQUEST_COUNT*sizeof(MPI_Status));
    rec_statuses=(MPI_Status *)malloc(REQUEST_COUNT*sizeof(MPI_Status));
    
    
    /* memory allocation for dynamic (wavefield) arrays */
    if(!ACOUSTIC){
        switch (WAVETYPE) {
            case 1: // P and SV Waves
                psxx =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psxy =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psyy =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                break;
                
            case 2: // SH Waves
                psxz =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psyz =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                break;
                
            case 3: // P, SH and SV Waves
                psxx =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psxy =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psyy =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psxz =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psyz =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                break;
        }
    }else{
        psp  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    }
    
    if(GRAD_METHOD==2) {
393
        /* Allocate memory for L-BFGS */
394
        
395
        if(WAVETYPE==2) LBFGS_NPAR=2;
396
        
397
        s_LBFGS=fmatrix(1,N_LBFGS,1,LBFGS_NPAR*NX*NY);
398
        
399
        y_LBFGS=fmatrix(1,N_LBFGS,1,LBFGS_NPAR*NX*NY);
400
        
401
        rho_LBFGS=vector(1,N_LBFGS);
402
        
403
404
405
406
        for(l=1;l<=N_LBFGS;l++){
            for(m=1;m<=LBFGS_NPAR*NX*NY;m++){
                s_LBFGS[l][m]=0.0;
                y_LBFGS[l][m]=0.0;
407
            }
408
            rho_LBFGS[l]=0.0;
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
        }
    }
    
    if(!ACOUSTIC){
        if(WAVETYPE==1||WAVETYPE==3){
            ux   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            uy   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            uxy  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            uyx  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            uttx   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            utty   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        }
        if(WAVETYPE==2||WAVETYPE==3){
            uxz   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            uyz   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        }
    }
    
    switch (WAVETYPE) {
        case 1: // P and SV Waves
            pvx  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvy  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvxp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvyp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvxm1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvym1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            break;
            
        case 2: // SH Waves
            pvz  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvzp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvzm1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            break;
            
        case 3: // P and SV Waves
            pvx  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvy  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvxp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvyp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvxm1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvym1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvz  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvzp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvzm1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            break;
    }
    
    Vp0  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    if(!ACOUSTIC)
        Vs0  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    Rho0  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    
    /* memory allocation for static (model) arrays */
    prho =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    prhonp1 =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    prip =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    prjp =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    pripnp1 =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    prjpnp1 =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    ppi  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    ppinp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    if(!ACOUSTIC){
        pu   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        punp1   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        puipjp   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    }
    vpmat   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    
    
    if((EPRECOND==1)||(EPRECOND==3)){
        if(WAVETYPE==1 || WAVETYPE==3) {
            We_sum = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            Ws = matrix(-nd+1,NY+nd,-nd+1,NX+nd); /* total energy of the source wavefield */
            Wr = matrix(-nd+1,NY+nd,-nd+1,NX+nd); /* total energy of the receiver wavefield */
            We = matrix(-nd+1,NY+nd,-nd+1,NX+nd); /* total energy of source and receiver wavefield */
        }
        if(WAVETYPE==2 || WAVETYPE==3) {
            We_sum_SH = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            Ws_SH = matrix(-nd+1,NY+nd,-nd+1,NX+nd); /* total energy of the source wavefield */
            Wr_SH = matrix(-nd+1,NY+nd,-nd+1,NX+nd); /* total energy of the receiver wavefield */
            We_SH = matrix(-nd+1,NY+nd,-nd+1,NX+nd); /* total energy of source and receiver wavefield */
        }
    }
    
    if (L) {
        /* dynamic (wavefield) arrays for viscoelastic modeling */
        pr = f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        pp = f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        pq = f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        /* memory allocation for static arrays for viscoelastic modeling */
        dip = f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        d =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        e =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        ptaus =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        ptausipjp =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        if(WAVETYPE==2 || WAVETYPE==3) {
            pt = f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
            po = f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        }
        ptaup =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        fipjp =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        f =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        g =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        peta =  vector(1,L);
        etaip =  vector(1,L);
        etajm =  vector(1,L);
        bip =  vector(1,L);
        bjm =  vector(1,L);
        cip =  vector(1,L);
        cjm =  vector(1,L);
    }
    
    /*nf=4;
     nfstart=4;*/
    
    NTST=20;
    NTSTI=NTST/DTINV;
    
    nxny=NX*NY;
    nxnyi=(NX/IDXI)*(NY/IDYI);
    
    /* Parameters for step length calculations */
    stepmax = STEPMAX; /* number of maximum misfit calculations/steplength 2/3*/
    scalefac = SCALEFAC; /* scale factor for the step length */
    
    if(INVMAT==0){
        waveconv = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        waveconv_lam = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        waveconv_shot = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        
        waveconvtmp = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        wcpart = matrix(1,3,1,3);
        wavejac = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        
        if(!ACOUSTIC){
            forward_prop_x =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
            forward_prop_y =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
        }else{
            forward_prop_p =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
        }
        gradg = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        gradp = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        
        if(WAVETYPE==1 || WAVETYPE==3){
            forward_prop_rho_x =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
            forward_prop_rho_y =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
        }
        if(WAVETYPE==2 || WAVETYPE==3){
            forward_prop_rho_z =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
            forward_prop_z_xz =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
            forward_prop_z_yz =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
            waveconv_rho_shot_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_u_shot_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_mu_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_rho_s_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_u_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_rho_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            gradp_u_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            gradp_rho_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        }
        
        gradg_rho = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        gradp_rho = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        waveconv_rho = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        waveconv_rho_s = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        waveconv_rho_shot = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        
        if(WOLFE_CONDITION){
577
578
579
580
            
            c1_SL=WOLFE_C1_SL;
            c2_SL=WOLFE_C2_SL;
            
581
            waveconv_old= matrix(-nd+1,NY+nd,-nd+1,NX+nd);
Florian Wittkamp's avatar
Florian Wittkamp committed
582
            if(!ACOUSTIC) waveconv_u_old= matrix(-nd+1,NY+nd,-nd+1,NX+nd);
583
584
585
            waveconv_rho_old= matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            
            waveconv_up= matrix(-nd+1,NY+nd,-nd+1,NX+nd);
Florian Wittkamp's avatar
Florian Wittkamp committed
586
            if(!ACOUSTIC) waveconv_u_up= matrix(-nd+1,NY+nd,-nd+1,NX+nd);
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
            waveconv_rho_up= matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        }
        
        if(!ACOUSTIC){
            forward_prop_u =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
            gradg_u = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            gradp_u = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_u = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_mu = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_u_shot = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        }
        
    }
    
    /* Allocate memory for boundary */
    if(FW>0){
        d_x = vector(1,2*FW);
        K_x = vector(1,2*FW);
        alpha_prime_x = vector(1,2*FW);
        a_x = vector(1,2*FW);
        b_x = vector(1,2*FW);
        
        d_x_half = vector(1,2*FW);
        K_x_half = vector(1,2*FW);
        alpha_prime_x_half = vector(1,2*FW);
        a_x_half = vector(1,2*FW);
        b_x_half = vector(1,2*FW);
        
        d_y = vector(1,2*FW);
        K_y = vector(1,2*FW);
        alpha_prime_y = vector(1,2*FW);
        a_y = vector(1,2*FW);
        b_y = vector(1,2*FW);
        
        d_y_half = vector(1,2*FW);
        K_y_half = vector(1,2*FW);
        alpha_prime_y_half = vector(1,2*FW);
        a_y_half = vector(1,2*FW);
        b_y_half = vector(1,2*FW);
        
        if (WAVETYPE==1||WAVETYPE==3){
            psi_sxx_x =  matrix(1,NY,1,2*FW);
            psi_syy_y =  matrix(1,2*FW,1,NX);
            psi_sxy_y =  matrix(1,2*FW,1,NX);
            psi_sxy_x =  matrix(1,NY,1,2*FW);
            psi_vxx   =  matrix(1,NY,1,2*FW);
            psi_vxxs  =  matrix(1,NY,1,2*FW);
            psi_vyy   =  matrix(1,2*FW,1,NX);
            psi_vxy   =  matrix(1,2*FW,1,NX);
            psi_vyx   =  matrix(1,NY,1,2*FW);
        }
        if(WAVETYPE==2||WAVETYPE == 3 ){
            psi_sxz_x =  matrix(1,NY,1,2*FW);
            psi_syz_y =  matrix(1,2*FW,1,NX);
            psi_vzx   =  matrix(1,NY,1,2*FW);
            psi_vzy   =  matrix(1,2*FW,1,NX);
        }
    }
    
    taper_coeff=  matrix(1,NY,1,NX);
    
    
    /* memory allocation for buffer arrays in which the wavefield
     information which is exchanged between neighbouring PEs is stored */
    bufferlef_to_rig = matrix(1,NY,1,fdo3);
    bufferrig_to_lef = matrix(1,NY,1,fdo3);
    buffertop_to_bot = matrix(1,NX,1,fdo3);
    bufferbot_to_top = matrix(1,NX,1,fdo3);
    
    /* Allocate memory to save full seismograms */
    switch (SEISMO){
        case 1 : /* particle velocities only */
            switch (WAVETYPE) {
                case 1:
                    fulldata_vx = matrix(1,ntr_glob,1,NT);
                    fulldata_vy = matrix(1,ntr_glob,1,NT);
                    break;
                    
                case 2:
                    fulldata_vz = matrix(1,ntr_glob,1,NT);
                    break;
                    
                case 3:
                    fulldata_vx = matrix(1,ntr_glob,1,NT);
                    fulldata_vy = matrix(1,ntr_glob,1,NT);
                    fulldata_vz = matrix(1,ntr_glob,1,NT);
                    break;
            }
            break;
        case 2 : /* pressure only */
            fulldata_p = matrix(1,ntr_glob,1,NT);
            break;
        case 3 : /* curl and div only */
            fulldata_div = matrix(1,ntr_glob,1,NT);
            fulldata_curl = matrix(1,ntr_glob,1,NT);
            break;
        case 4 : /* everything */
            switch (WAVETYPE) {
                case 1:
                    fulldata_vx = matrix(1,ntr_glob,1,NT);
                    fulldata_vy = matrix(1,ntr_glob,1,NT);
                    break;
                    
                case 2:
                    fulldata_vz = matrix(1,ntr_glob,1,NT);
                    break;
                    
                case 3:
                    fulldata_vx = matrix(1,ntr_glob,1,NT);
                    fulldata_vy = matrix(1,ntr_glob,1,NT);
                    fulldata_vz = matrix(1,ntr_glob,1,NT);
                    break;
            }
            fulldata_p = matrix(1,ntr_glob,1,NT);
            fulldata_div = matrix(1,ntr_glob,1,NT);
            fulldata_curl = matrix(1,ntr_glob,1,NT);
            break;
        case 5 : /* everything except curl and div*/
            switch (WAVETYPE) {
                case 1:
                    fulldata_vx = matrix(1,ntr_glob,1,NT);
                    fulldata_vy = matrix(1,ntr_glob,1,NT);
                    break;
                    
                case 2:
                    fulldata_vz = matrix(1,ntr_glob,1,NT);
                    break;
                    
                case 3:
                    fulldata_vx = matrix(1,ntr_glob,1,NT);
                    fulldata_vy = matrix(1,ntr_glob,1,NT);
                    fulldata_vz = matrix(1,ntr_glob,1,NT);
                    break;
            }
            fulldata_p = matrix(1,ntr_glob,1,NT);
            break;
            
    }
    if (ntr>0){
        switch (SEISMO){
            case 1 : /* particle velocities only */
                switch (WAVETYPE) {
                    case 1:
                        sectionvx=matrix(1,ntr,1,ns);
                        sectionvy=matrix(1,ntr,1,ns);
                        break;
                    case 2:
                        sectionvz=matrix(1,ntr,1,ns);
                        break;
                    case 3:
                        sectionvx=matrix(1,ntr,1,ns);
                        sectionvy=matrix(1,ntr,1,ns);
                        sectionvz=matrix(1,ntr,1,ns);
                        break;
                }
                break;
            case 2 : /* pressure only */
                sectionp=matrix(1,ntr,1,ns);
                sectionpnp1=matrix(1,ntr,1,ns);
                sectionpn=matrix(1,ntr,1,ns);
                break;
            case 3 : /* curl and div only */
                sectioncurl=matrix(1,ntr,1,ns);
                sectiondiv=matrix(1,ntr,1,ns);
                break;
            case 4 : /* everything */
                switch (WAVETYPE) {
                    case 1:
                        sectionvx=matrix(1,ntr,1,ns);
                        sectionvy=matrix(1,ntr,1,ns);
                        break;
                    case 2:
                        sectionvz=matrix(1,ntr,1,ns);
                        break;
                    case 3:
                        sectionvx=matrix(1,ntr,1,ns);
                        sectionvy=matrix(1,ntr,1,ns);
                        sectionvz=matrix(1,ntr,1,ns);
                        break;
                }
                sectioncurl=matrix(1,ntr,1,ns);
                sectiondiv=matrix(1,ntr,1,ns);
                sectionp=matrix(1,ntr,1,ns);
                break;
            case 5 : /* everything except curl and div*/
                switch (WAVETYPE) {
                    case 1:
                        sectionvx=matrix(1,ntr,1,ns);
                        sectionvy=matrix(1,ntr,1,ns);
                        break;
                    case 2:
                        sectionvz=matrix(1,ntr,1,ns);
                        break;
                    case 3:
                        sectionvx=matrix(1,ntr,1,ns);
                        sectionvy=matrix(1,ntr,1,ns);
                        sectionvz=matrix(1,ntr,1,ns);
                        break;
                }
                sectionp=matrix(1,ntr,1,ns);
                break;
        }
    }
    
    /* Memory for seismic data */
    sectionread=matrix(1,ntr_glob,1,ns);
    sectionpdata=matrix(1,ntr,1,ns);
    sectionpdiff=matrix(1,ntr,1,ns);
    sectionpdiffold=matrix(1,ntr,1,ns);
    switch (WAVETYPE) {
        case 1:
            sectionvxdata=matrix(1,ntr,1,ns);
            sectionvxdiff=matrix(1,ntr,1,ns);
            sectionvxdiffold=matrix(1,ntr,1,ns);
            sectionvydata=matrix(1,ntr,1,ns);
            sectionvydiff=matrix(1,ntr,1,ns);
            sectionvydiffold=matrix(1,ntr,1,ns);
            break;
            
        case 2:
            sectionvzdata=matrix(1,ntr,1,ns);
            sectionvzdiff=matrix(1,ntr,1,ns);
            sectionvzdiffold=matrix(1,ntr,1,ns);
            break;
            
        case 3:
            sectionvxdata=matrix(1,ntr,1,ns);
            sectionvxdiff=matrix(1,ntr,1,ns);
            sectionvxdiffold=matrix(1,ntr,1,ns);
            sectionvydata=matrix(1,ntr,1,ns);
            sectionvydiff=matrix(1,ntr,1,ns);
            sectionvydiffold=matrix(1,ntr,1,ns);
            sectionvzdata=matrix(1,ntr,1,ns);
            sectionvzdiff=matrix(1,ntr,1,ns);
            sectionvzdiffold=matrix(1,ntr,1,ns);
            break;
    }
    
    /* Memory for inversion for source time function */
    if((INV_STF==1)||(TIME_FILT==1) || (TIME_FILT==2)){
        sectionp_conv=matrix(1,ntr_glob,1,NT);
        sectionp_obs=matrix(1,ntr_glob,1,NT);
        source_time_function = vector(1,NT);
        switch (WAVETYPE) {
            case 1:
                sectionvy_conv=matrix(1,ntr_glob,1,NT);
                sectionvy_obs=matrix(1,ntr_glob,1,NT);
                sectionvx_conv=matrix(1,ntr_glob,1,NT);
                sectionvx_obs=matrix(1,ntr_glob,1,NT);
                break;
                
            case 2:
                sectionvz_conv=matrix(1,ntr_glob,1,NT);
                sectionvz_obs=matrix(1,ntr_glob,1,NT);
                break;
                
            case 3:
                sectionvy_conv=matrix(1,ntr_glob,1,NT);
                sectionvy_obs=matrix(1,ntr_glob,1,NT);
                sectionvx_conv=matrix(1,ntr_glob,1,NT);
                sectionvx_obs=matrix(1,ntr_glob,1,NT);
                sectionvz_conv=matrix(1,ntr_glob,1,NT);
                sectionvz_obs=matrix(1,ntr_glob,1,NT);
                break;
        }
    }
    
    /* memory for source position definition */
    srcpos1=fmatrix(1,8,1,1);
    
    /* memory of L2 norm */
    L2t = vector(1,4);
    epst1 = vector(1,3);
    epst2 = vector(1,3);
    epst3 = vector(1,3);
    picked_times = vector(1,ntr);
    
    fprintf(FP," ... memory allocation for PE %d was successfull.\n\n", MYID);
    
    
    /* Holberg coefficients for FD operators*/
    hc = holbergcoeff();
    
    MPI_Barrier(MPI_COMM_WORLD);
    
    /* Reading source positions from SOURCE_FILE */
    srcpos=sources(&nsrc);
    nsrc_glob=nsrc;
    
    if(INVMAT==0&&USE_WORKFLOW){
877
        read_workflow(FILE_WORKFLOW,&workflow, &workflow_lines,workflow_header);
878
879
880
    }
    
    /* create model grids */
Florian Wittkamp's avatar
Florian Wittkamp committed
881
    if(L){
882
        if(!ACOUSTIC){
Florian Wittkamp's avatar
Florian Wittkamp committed
883
884
885
886
            if (READMOD){
                readmod(prho,ppi,pu,ptaus,ptaup,peta);
            }else{
                model(prho,ppi,pu,ptaus,ptaup,peta);
887
888
            }
        }else{
Florian Wittkamp's avatar
Florian Wittkamp committed
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
            if (READMOD){
                readmod_viscac(prho,ppi,ptaup,peta);
            }else{
                model_viscac(prho,ppi,ptaup,peta);
            }
        }
    }else{
        if(!ACOUSTIC){
            if (READMOD){
                readmod_elastic(prho,ppi,pu);
            }else{
                model_elastic(prho,ppi,pu);
            }
        }else{
            if (READMOD){
                readmod_acoustic(prho,ppi);
            }else{
                model_acoustic(prho,ppi);
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
            }
        }
    }
    
    /* check if the FD run will be stable and free of numerical dispersion */
    checkfd(FP, prho, ppi, pu, ptaus, ptaup, peta, hc, srcpos, nsrc, recpos, ntr_glob);
    
    /* calculate damping coefficients for CPMLs*/
    if(FW>0)
        PML_pro(d_x, K_x, alpha_prime_x, a_x, b_x, d_x_half, K_x_half, alpha_prime_x_half, a_x_half, b_x_half, d_y, K_y, alpha_prime_y, a_y, b_y, d_y_half, K_y_half, alpha_prime_y_half, a_y_half, b_y_half);
    
    MPI_Barrier(MPI_COMM_WORLD);
    
    /* comunication initialisation for persistent communication */
    /*comm_ini(bufferlef_to_rig, bufferrig_to_lef, buffertop_to_bot, bufferbot_to_top, req_send, req_rec);*/
    
    snapseis=1;
    snapseis1=1;
    SHOTINC=1;
    RECINC=1;
    
    switch(TIME_FILT){
        case 1: FC=FC_START; break;
            /*read frequencies from file*/
        case 2: FC_EXT=filter_frequencies(&nfrq); FC=FC_EXT[FREQ_NR]; break;
    }
    
    QUELLART_OLD = QUELLART;
    
    nt_out=10000;
    if(!VERBOSE) nt_out=1e5;
    /*------------------------------------------------------------------------------*/
    /*----------- start fullwaveform iteration loop --------------------------------*/
    /*------------------------------------------------------------------------------*/
    
    for(iter=1;iter<=ITERMAX;iter++){  /* fullwaveform iteration loop */
        
        // At each iteration the workflow is applied
        if(USE_WORKFLOW&&(INVMAT==0)){
            
947
            apply_workflow(workflow,workflow_lines,workflow_header,&iter,&FC,wavetype_start,&change_wavetype_iter,&LBFGS_iter_start);
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
            
        }
        
        if(GRAD_METHOD==2&&(INVMAT==0)){
            
            /* detect a change in inversion process and restart L-BFGS */
            if(iter==INV_RHO_ITER||iter==INV_VP_ITER||iter==INV_VS_ITER){
                LBFGS_iter_start=iter;
                
                if(WOLFE_CONDITION) {
                    /* Restart Step Length search */
                    alpha_SL_old=1;
                }
                
                /* set values */
                FWI_run=1;
                gradient_optimization=1;
            }
            
            /* restart L-BFGS */
            if(iter==LBFGS_iter_start) {
969
                lbfgs_reset(iter,N_LBFGS,LBFGS_NPAR,s_LBFGS,y_LBFGS,rho_LBFGS);
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
                
                /* set values */
                FWI_run=1;
                gradient_optimization=1;
            }
            
        }
        
        if (MYID==0){
            time2=MPI_Wtime();
            fprintf(FP,"\n\n\n ------------------------------------------------------------------\n");
            fprintf(FP,"\n\n\n                   TDFWI ITERATION %d \t of %d \n",iter,ITERMAX);
            fprintf(FP,"\n\n\n ------------------------------------------------------------------\n");
        }
        
        countstep=0;
        
        if(GRAD_METHOD==1) {FWI_run=1; steplength_search=0; gradient_optimization=1;}
        
        /*-----------------------------------------------------*/
        /*  While loop for Wolfe step length search            */
        /*-----------------------------------------------------*/
        while(FWI_run || steplength_search || gradient_optimization) {
            
            /*-----------------------------------------------------*/
            /*              Calculate Misfit and gradient          */
            /*-----------------------------------------------------*/
            if(FWI_run){
                /* For the calculation of the material parameters between gridpoints
                 they have to be averaged. For this, values lying at 0 and NX+1,
                 for example, are required on the local grid. These are now copied from the
                 neighbouring grids */
Florian Wittkamp's avatar
Florian Wittkamp committed
1002
1003
1004
1005
1006
1007
                if (L){
                    if(!ACOUSTIC){
                        matcopy(prho,ppi,pu,ptaus,ptaup);
                    } else {
                        matcopy_viscac(prho,ppi,ptaup);
                    }
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
                }else{
                    if(!ACOUSTIC){
                        matcopy_elastic(prho, ppi, pu);
                    }else{
                        matcopy_acoustic(prho, ppi);
                    }
                }
                
                MPI_Barrier(MPI_COMM_WORLD);
                
                /* MPI split for processors with ntr>0 */
                int myid_ntr, group_id=0, groupsize;
                MPI_Comm	MPI_COMM_NTR;
                
                if (ntr) group_id = 1;
                else group_id = 0;
                MPI_Comm_split(MPI_COMM_WORLD, group_id, MYID, &MPI_COMM_NTR);
                MPI_Comm_rank(MPI_COMM_NTR, &myid_ntr);
                /* end of MPI split for processors with ntr>0 */
                
                
1029
                if(!ACOUSTIC) av_mue(pu,puipjp,prho);
1030
                av_rho(prho,prip,prjp);
1031
                if (!ACOUSTIC && L) av_tau(ptaus,ptausipjp);
1032
1033
1034
                
                
                /* Preparing memory variables for update_s (viscoelastic) */
Florian Wittkamp's avatar
Florian Wittkamp committed
1035
1036
1037
1038
1039
1040
1041
                if (L) {
                    if(!ACOUSTIC){
                        prepare_update_s(etajm,etaip,peta,fipjp,pu,puipjp,ppi,prho,ptaus,ptaup,ptausipjp,f,g,bip,bjm,cip,cjm,dip,d,e);
                    } else {
                        prepare_update_p(etajm,peta,ppi,prho,ptaup,g,bjm,cjm,e);
                    }
                }
1042
                
1043
                /* Do some initia calculations */
1044
1045
1046
                if(iter==1){
                    
                    /* Calculationg material parameters according to INVMAT1 */
1047
1048
                    for (j=1;j<=NY;j=j+IDY){
                        for (i=1;i<=NX;i=i+IDX){
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
                            
                            if(INVMAT1==1){
                                
                                Vp0[j][i] = ppi[j][i];
                                if(!ACOUSTIC) Vs0[j][i] = pu[j][i];
                                Rho0[j][i] = prho[j][i];}
                            
                            
                            
                            if(INVMAT1==2){
                                
                                Vp0[j][i] = sqrt((ppi[j][i]+2.0*pu[j][i])*prho[j][i]);
                                Vs0[j][i] = sqrt((pu[j][i])*prho[j][i]);
                                Rho0[j][i] = prho[j][i];
                                
                            }
                            
                            if(INVMAT1==3){
                                
                                Vp0[j][i] = ppi[j][i];
                                Vs0[j][i] = pu[j][i];
                                Rho0[j][i] = prho[j][i];
                                
                            }
                            
                        }
                    }
                    
1077
1078
1079
1080
1081
                    /* Get average values from material parameters */
                    Vp_avg=average_matrix(ppi);
                    rho_avg=average_matrix(prho);
                    if(!ACOUSTIC) Vs_avg=average_matrix(pu);
        
1082
1083
                    if(!ACOUSTIC) if(VERBOSE) printf("MYID = %d \t Vp_avg = %e \t Vs_avg = %e \t rho_avg = %e \n ",MYID,Vp_avg,Vs_avg,rho_avg);
                    else if(VERBOSE) printf("MYID = %d \t Vp_avg = %e \t rho_avg = %e \n ",MYID,Vp_avg,rho_avg);
1084

1085
1086
1087
1088
1089
1090
1091
1092
                    C_vp = Vp_avg*Vp_avg;
                    if(!ACOUSTIC) C_vs = Vs_avg*Vs_avg;
                    C_rho = rho_avg*rho_avg;
                }
                
                /* Open Log File for L2 norm */
                if(INVMAT!=10){
                    if(MYID==0){
Florian Wittkamp's avatar
Florian Wittkamp committed
1093
1094
                        if(iter==1){
                            FPL2=fopen(MISFIT_LOG_FILE,"w");
1095
1096
1097
1098
1099
1100
1101
1102
                            /* Write header for misfit log file */
                            if(GRAD_METHOD==1) {
                                if (TIME_FILT==0){
                                    fprintf(FPL2,"opteps_vp \t epst1[1] \t epst1[2] \t epst1[3] \t L2t[1] \t L2t[2] \t L2t[3] \t L2t[4] \n");}
                                else{
                                    fprintf(FPL2,"opteps_vp \t epst1[1] \t epst1[2] \t epst1[3] \t L2t[1] \t L2t[2] \t L2t[3] \t L2t[4] \t FC \n");
                                }
                            }
Florian Wittkamp's avatar
Florian Wittkamp committed
1103
                        }
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
                        if(iter>1){FPL2=fopen(MISFIT_LOG_FILE,"a");}
                    }
                }
                
                /* initialization of L2 calculation */
                L2=0.0;
                Lcount=0;
                energy=0.0;
                L2_all_shots=0.0;
                energy_all_shots=0.0;
                killed_traces=0;
                killed_traces_testshots=0;
                
                
                EPSILON=0.0;  /* test step length */
                exchange_par();
                
                /* initialize waveconv matrix*/
                if(WAVETYPE==1||WAVETYPE==3){
                    if(INVMAT==0){
1124
                        for (j=1;j<=NY;j=j+IDY){
1125
                            for (i=1;i<=NX;i=i+IDX){
1126
                                waveconv[j][i]=0.0;
1127
                                waveconv_rho[j][i]=0.0;
1128
                                if(!ACOUSTIC) waveconv_u[j][i]=0.0;
1129
1130
1131
1132
1133
1134
1135
                            }
                        }
                    }
                }
                /* initialize waveconv matrix*/
                if(WAVETYPE==2||WAVETYPE==3){
                    if(INVMAT==0){
1136
1137
                        for (j=1;j<=NY;j=j+IDY){
                            for (i=1;i<=NX;i=i+IDX){
1138
1139
1140
1141
1142
1143
1144
1145
1146
                                waveconv_rho_z[j][i]=0.0;
                                waveconv_u_z[j][i]=0.0;
                                
                            }
                        }
                    }
                }
                
                if((EPRECOND>0)&&(EPRECOND_ITER==iter||(EPRECOND_ITER==0))){
1147
1148
                    for (j=1;j<=NY;j=j+IDY){
                        for (i=1;i<=NX;i=i+IDX){
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
                            if(WAVETYPE==1||WAVETYPE==3) We_sum[j][i]=0.0;
                            if(WAVETYPE==2||WAVETYPE==3) We_sum_SH[j][i]=0.0;
                        }
                    }
                }
                
                
                
                itestshot=TESTSHOT_START;
                swstestshot=0;
                
                if(INVTYPE==2){
                    if (RUN_MULTIPLE_SHOTS) nshots=nsrc; else nshots=1;
                    
                    /*------------------------------------------------------------------------------*/
                    /*----------- Start of loop over shots -----------------------------------------*/
                    /*------------------------------------------------------------------------------*/
                    
                    for (ishot=1;ishot<=nshots;ishot+=SHOTINC){
                        /*for (ishot=1;ishot<=1;ishot+=1){*/
                        QUELLART = QUELLART_OLD;
                        
                        if (INV_STF==1 && WAVETYPE !=1) {
                            fprintf(FP,"\n==================================================================================\n");
                            fprintf(FP,"\n====== Source time function inversion and WAVETYPE !=1 not supported    ==========\n");
                            fprintf(FP,"\n==================================================================================\n");
                            err(" NO STFI and WAVETYPE !=1 ");
                        }
                        
                        /*------------------------------------------------------------------------------*/
                        /*----------- Start of inversion of source time function -----------------------*/
                        /*------------------------------------------------------------------------------*/
                        
                        if((INV_STF==1)&&((iter==1)||(s==1))){
                            fprintf(FP,"\n==================================================================================\n");
                            fprintf(FP,"\n MYID=%d *****  Forward simulation for inversion of source time function ******** \n",MYID);
                            fprintf(FP,"\n MYID=%d * Starting simulation (forward model) for shot %d of %d. Iteration %d ** \n",MYID,ishot,nshots,iter);
                            fprintf(FP,"\n==================================================================================\n\n");
                            
                            for (nt=1;nt<=8;nt++) srcpos1[nt][1]=srcpos[nt][ishot];
                            
                            if (RUN_MULTIPLE_SHOTS){
                                /* find this single source positions on subdomains */
                                if (nsrc_loc>0) free_matrix(srcpos_loc,1,8,1,1);
                                srcpos_loc=splitsrc(srcpos1,&nsrc_loc, 1);
                            }else{
                                /* Distribute multiple source positions on subdomains */
                                srcpos_loc = splitsrc(srcpos,&nsrc_loc, nsrc);
                            }
                            
                            if((QUELLART==7)||(QUELLART==3))err("QUELLART==7 or QUELLART==3 isn't possible with INV_STF==1");
                            MPI_Barrier(MPI_COMM_WORLD);
                            /* calculate wavelet for each source point */
                            signals=NULL;
                            signals=wavelet(srcpos_loc,nsrc_loc,ishot,0);
Florian Wittkamp's avatar
Florian Wittkamp committed
1204
                            
1205
1206
1207
                            
                            /* initialize wavefield with zero */
                            if (L){
Florian Wittkamp's avatar
Florian Wittkamp committed
1208
1209
1210
1211
1212
                                if(!ACOUSTIC) {
                                    zero_fdveps_visc(-nd+1,NY+nd,-nd+1,NX+nd,pvx,pvy,pvz,psxx,psyy,psxy,psxz,psyz,ux,uy,uxy,pvxp1,pvyp1,psi_sxx_x,psi_sxy_x,psi_sxz_x,psi_vxx,psi_vyx,psi_vzx,psi_syy_y,psi_sxy_y,psi_syz_y,psi_vyy,psi_vxy,psi_vzy,psi_vxxs,pr,pp,pq,pt,po);
                                } else {
                                    zero_fdveps_viscac(-nd+1, NY+nd, -nd+1, NX+nd, pvx, pvy, psp, pvxp1, pvyp1, psi_sxx_x, psi_sxy_x, psi_vxx, psi_vyx, psi_syy_y, psi_sxy_y, psi_vyy, psi_vxy, psi_vxxs, pp);
                                }
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
                            }else{
                                if(!ACOUSTIC)
                                    zero_fdveps(-nd+1,NY+nd,-nd+1,NX+nd,pvx,pvy,pvz,psxx,psyy,psxy,psxz,psyz,ux,uy,uxy,pvxp1,pvyp1,psi_sxx_x,psi_sxy_x,psi_sxz_x,psi_vxx,psi_vyx,psi_vzx,psi_syy_y,psi_sxy_y,psi_syz_y,psi_vyy,psi_vxy,psi_vzy,psi_vxxs);
                                else
                                    zero_fdveps_ac(-nd+1,NY+nd,-nd+1,NX+nd,pvx,pvy,psp,pvxp1,pvyp1,psi_sxx_x,psi_sxy_x,psi_vxx,psi_vyx,psi_syy_y,psi_sxy_y,psi_vyy,psi_vxy,psi_vxxs);
                            }
                            
                            
                            /*----------------------  loop over timesteps (forward model) ------------------*/
                            
                            lsnap=iround(TSNAP1/DT);
                            lsamp=NDT;
                            nsnap=0;
                            
                            hin=1;
                            hin1=1;
                            
                            imat=1;
                            imat1=1;
                            imat2=1;
                            hi=1;
                            
                            for (nt=1;nt<=NT;nt++){
                                
                                infoout = !(nt%nt_out);
                                /* Check if simulation is still stable */
                                if (isnan(pvy[NY/2][NX/2])) {
                                    fprintf(FP,"\n Time step: %d; pvy: %f \n",nt,pvy[NY/2][NX/2]);
                                    err(" Simulation is unstable !");}
                                
                                
                                if (MYID==0){
                                    if (infoout)  fprintf(FP,"\n Computing timestep %d of %d \n",nt,NT);
                                    time3=MPI_Wtime();
                                }
                                
                                if(!ACOUSTIC)
                                    update_v_PML(1, NX, 1, NY, nt, pvx, pvxp1, pvxm1, pvy, pvyp1, pvym1, uttx, utty, psxx, psyy, psxy, prip, prjp, srcpos_loc,signals,signals,nsrc_loc,absorb_coeff,hc,infoout,0, K_x, a_x,b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half, psi_sxx_x, psi_syy_y, psi_sxy_y, psi_sxy_x);
                                else
                                    update_v_acoustic_PML(1, NX, 1, NY, nt, pvx, pvxp1, pvxm1, pvy, pvyp1, pvym1, psp, prip, prjp, srcpos_loc,signals,signals,nsrc_loc,absorb_coeff,hc,infoout,0, K_x_half, a_x_half, b_x_half, K_y_half, a_y_half, b_y_half, psi_sxx_x, psi_syy_y);
                                
                                if (MYID==0){
                                    time4=MPI_Wtime();
                                    time_av_v_update+=(time4-time3);
                                    if (infoout)  fprintf(FP," particle velocity exchange between PEs ...");
                                }
                                
                                /* exchange of particle velocities between PEs */
                                exchange_v(pvx,pvy,pvz, bufferlef_to_rig, bufferrig_to_lef, buffertop_to_bot, bufferbot_to_top, req_send, req_rec,wavetype_start);
                                
                                if (MYID==0){
                                    time5=MPI_Wtime();
                                    time_av_v_exchange+=(time5-time4);
                                    if (infoout)  fprintf(FP," finished (real time: %4.2f s).\n",time5-time4);
                                }
                                
                                if (L) {   /* viscoelastic */
Florian Wittkamp's avatar
Florian Wittkamp committed
1270
1271
1272
1273
1274
                                    if(!ACOUSTIC) {
                                        update_s_visc_PML(1, NX, 1, NY, pvx, pvy, ux, uy, uxy, uyx, psxx, psyy, psxy, ppi, pu, puipjp, prho, hc, infoout,pr, pp, pq, fipjp, f, g, bip, bjm, cip, cjm, d, e, dip,K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half, psi_vxx, psi_vyy, psi_vxy, psi_vyx);
                                    }else{
                                        update_p_visc_PML(1, NX, 1, NY, pvx, pvy, psp, ppi, prho, hc, infoout, pp, g, bjm, cjm, e, K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half, psi_vxx, psi_vyy, psi_vxy, psi_vyx);
                                    }
1275
1276
1277
1278
1279
1280
1281
1282
                                }else{
                                    if(!ACOUSTIC)
                                        update_s_elastic_PML(1, NX, 1, NY, pvx, pvy, ux, uy, uxy, uyx, psxx, psyy, psxy, ppi, pu, puipjp, absorb_coeff, prho, hc, infoout,K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half, psi_vxx, psi_vyy, psi_vxy, psi_vyx);
                                    else
                                        update_p_PML(1, NX, 1, NY, pvx, pvy, psp, ppi, absorb_coeff, prho, hc, infoout, K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half, psi_vxx, psi_vyy, psi_vxy, psi_vyx);
                                }
                                
                                /* explosive source */
1283
                                if ((QUELLTYP==1))
1284
1285
                                    psource(nt,psxx,psyy,psp,srcpos_loc,signals,nsrc_loc,0);
                                
1286
                                /* Applying free surface condition */
Florian Wittkamp's avatar
Florian Wittkamp committed
1287
1288
                                if ((FREE_SURF) && (POS[2]==0)){
                                    if (!ACOUSTIC){
1289
1290
                                        if (L){
                                            /* viscoelastic */
1291
                                            surface_PML(1, pvx, pvy, psxx, psyy, psxy,psyz, pp, pq, ppi, pu, prho, ptaup, ptaus, etajm, peta, hc, K_x, a_x, b_x, psi_vxxs, ux, uy,uxy,uyz,psxz,uxz);
1292
1293
                                        }else{
                                            /* elastic */
1294
                                            surface_elastic_PML(1, pvx, pvy, psxx, psyy, psxy,psyz, ppi, pu, prho, hc, K_x, a_x, b_x, psi_vxxs, ux, uy, uxy,uyz,psxz,uxz);
Florian Wittkamp's avatar
Florian Wittkamp committed
1295
                                        }
1296
1297
                                    } else {
                                        /* viscoelastic and elastic ACOUSTIC */
Florian Wittkamp's avatar
Florian Wittkamp committed
1298
                                        surface_acoustic_PML(1, psp);
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
                                    }
                                }
                                
                                
                                if (MYID==0){
                                    time6=MPI_Wtime();
                                    time_av_s_update+=(time6-time5);
                                    if (infoout)  fprintf(FP," stress exchange between PEs ...");
                                }
                                
                                
                                /* stress exchange between PEs */
                                if(!ACOUSTIC)
                                    exchange_s(psxx,psyy,psxy,psxz,psyz,bufferlef_to_rig, bufferrig_to_lef,buffertop_to_bot, bufferbot_to_top,req_send, req_rec,wavetype_start);
                                else
                                    exchange_p(psp,bufferlef_to_rig, bufferrig_to_lef,buffertop_to_bot, bufferbot_to_top,req_send, req_rec);
                                
                                if (MYID==0){
                                    time7=MPI_Wtime();
                                    time_av_s_exchange+=(time7-time6);
                                    if (infoout)  fprintf(FP," finished (real time: %4.2f s).\n",time7-time6);
                                }
                                
                                /* store amplitudes at receivers in section-arrays */
                                if (SEISMO){
                                    seismo_ssg(nt, ntr, recpos_loc, sectionvx, sectionvy,sectionvz,sectionp, sectioncurl, sectiondiv,pvx, pvy,pvz, psxx, psyy, psp, ppi, pu, hc);
                                    /*lsamp+=NDT;*/
                                }
                                
                                
                                if(nt==hin1){
                                    
                                    if(INVMAT==0){
1332
1333
                                        for (j=1;j<=NY;j=j+IDYI){
                                            for (i=1;i<=NX;i=i+IDXI){
1334
1335
1336
1337
1338
1339
1340
                                                forward_prop_rho_x[j][i][hin]=pvxp1[j][i];
                                                forward_prop_rho_y[j][i][hin]=pvyp1[j][i];
                                            }
                                        }
                                        
                                        /* save snapshots from forward model */
                                        if(!ACOUSTIC){
1341
1342
                                            for (j=1;j<=NY;j=j+IDYI){
                                                for (i=1;i<=NX;i=i+IDXI){
1343
1344
1345
1346
1347
1348
                                                    if(VELOCITY==0){
                                                        forward_prop_x[j][i][hin]=psxx[j][i];
                                                        forward_prop_y[j][i][hin]=psyy[j][i];
                                                    } else {
                                                        forward_prop_x[j][i][hin]=ux[j][i];
                                                        forward_prop_y[j][i][hin]=uy[j][i];}
Florian Wittkamp's avatar
Florian Wittkamp committed
1349
1350
1351
                                                }
                                            }
                                        }else{
1352
1353
                                            for (j=1;j<=NY;j=j+IDYI){
                                                for (i=1;i<=NX;i=i+IDXI){
Florian Wittkamp's avatar
Florian Wittkamp committed
1354
                                                    forward_prop_p[j][i][hin]=psp[j][i];
1355
1356
                                                }
                                            }
Florian Wittkamp's avatar
Florian Wittkamp committed
1357
1358
                                        }
                                        if(!ACOUSTIC){
1359
1360
                                            for (j=1;j<=NY;j=j+IDYI){
                                                for (i=1;i<=NX;i=i+IDXI){
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
                                                    if(VELOCITY==0){
                                                        forward_prop_u[j][i][hin]=psxy[j][i];}
                                                    else{
                                                        forward_prop_u[j][i][hin]=uxy[j][i];}
                                                }
                                            }
                                        }
                                        
                                        hin++;
                                        hin1=hin1+DTINV;
                                        
                                    }
                                    DTINV_help[nt]=1;
                                    
                                }
                                
                                /* WRITE SNAPSHOTS TO DISK */
                                if ((SNAP) && (nt==lsnap) && (nt<=TSNAP2/DT)){
                                    snap(FP,nt,++nsnap,pvx,pvy,psxx,psyy,psp,pu,ppi,hc,ishot);
                                    lsnap=lsnap+iround(TSNAPINC/DT);
                                }
                                
                                
                                if (MYID==0){
                                    time8=MPI_Wtime();
                                    time_av_timestep+=(time8-time3);
                                    if (infoout)  fprintf(FP," total real time for timestep %d : %4.2f s.\n",nt,time8-time3);
                                }
                                
                                
                            }/*--------------------  End  of loop over timesteps (forward model) ----------*/
                            
                            switch (SEISMO){
                                    
                                case 1 : 	/* particle velocities only */
                                    catseis(sectionvx, fulldata_vx, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    catseis(sectionvy, fulldata_vy, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    if(WAVETYPE==2 || WAVETYPE==3) {
                                        catseis(sectionvz, fulldata_vz, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    }
                                    if (MYID==0){
Florian Wittkamp's avatar
Florian Wittkamp committed
1402
                                        saveseis_glob(FP,fulldata_vx,fulldata_vy,fulldata_vz,fulldata_p,fulldata_curl,fulldata_div,recpos,recpos_loc,ntr_glob,srcpos,ishot,ns,iter,1);}
1403
1404
1405
1406
                                    break;
                                    
                                case 2 :	/* pressure only */
                                    catseis(sectionp, fulldata_p, recswitch, ntr_glob, MPI_COMM_WORLD);
Florian Wittkamp's avatar
Florian Wittkamp committed
1407
                                    if (MYID==0) saveseis_glob(FP,fulldata_vx,fulldata_vy,fulldata_vz,fulldata_p,fulldata_curl,fulldata_div,recpos,recpos_loc,ntr_glob,srcpos,ishot,ns,iter,1);
1408
1409
1410
1411
1412
                                    break;
                                    
                                case 3 : 	/* curl and div only */
                                    catseis(sectiondiv, fulldata_div, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    catseis(sectioncurl, fulldata_curl, recswitch, ntr_glob, MPI_COMM_WORLD);
Florian Wittkamp's avatar
Florian Wittkamp committed
1413
                                    if (MYID==0) saveseis_glob(FP,fulldata_vx,fulldata_vy,fulldata_vz,fulldata_p,fulldata_curl,fulldata_div,recpos,recpos_loc,ntr_glob,srcpos,ishot,ns,iter,1);
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
                                    break;
                                    
                                case 4 :	/* everything */
                                    catseis(sectionvx, fulldata_vx, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    catseis(sectionvy, fulldata_vy, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    catseis(sectionp, fulldata_p, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    if(WAVETYPE==2 || WAVETYPE==3) {
                                        catseis(sectionvz, fulldata_vz, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    }
                                    catseis(sectiondiv, fulldata_div, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    catseis(sectioncurl, fulldata_curl, recswitch, ntr_glob, MPI_COMM_WORLD);
Florian Wittkamp's avatar
Florian Wittkamp committed
1425
                                    if (MYID==0) saveseis_glob(FP,fulldata_vx,fulldata_vy,fulldata_vz,fulldata_p,fulldata_curl,fulldata_div,recpos,recpos_loc,ntr_glob,srcpos,ishot,ns,iter,1);
1426
1427
1428
1429
1430
1431
1432
1433
1434
                                    break;
                                    
                                case 5 :	/* everything except curl and div*/
                                    catseis(sectionvx, fulldata_vx, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    catseis(sectionvy, fulldata_vy, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    if(WAVETYPE==2 || WAVETYPE==3) {
                                        catseis(sectionvz, fulldata_vz, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    }
                                    catseis(sectionp, fulldata_p, recswitch, ntr_glob, MPI_COMM_WORLD);
Florian Wittkamp's avatar
Florian Wittkamp committed
1435
                                    if (MYID==0) saveseis_glob(FP,fulldata_vx,fulldata_vy,fulldata_vz,fulldata_p,fulldata_curl,fulldata_div,recpos,recpos_loc,ntr_glob,srcpos,ishot,ns,iter,1);
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
                                    break;
                                    
                            } /* end of switch (SEISMO) */
                            
                            /* end of Forward simulation for inversion of source time function */
                            
                            /*----------- Start of inversion of source time function -------------*/
                            if((TIME_FILT==1) ||(TIME_FILT==2)){
                                
                                if (INVMAT==0){
                                    if((INV_STF==1)&&((iter==1)||(s==1))){
                                        
                                        if (nsrc_loc>0){
                                            
                                            /*time domain filtering of the observed data sectionvy_obs */
                                            if ((QUELLTYPB==1)|| (QUELLTYPB==2)){
                                                inseis(fprec,ishot,sectionvy_obs,ntr_glob,ns,2,iter);
                                                timedomain_filt(sectionvy_obs,FC,ORDER,ntr_glob,ns,1);
                                            }
                                            if (QUELLTYPB==4){
                                                inseis(fprec,ishot,sectionp_obs,ntr_glob,ns,9,iter);
                                                timedomain_filt(sectionp_obs,FC,ORDER,ntr_glob,ns,1);
                                            }
                                            
                                            printf("\n ====================================================================================================== \n");
                                            printf("\n Time Domain Filter is used for the inversion: lowpass filter, corner frequency of %.2f Hz, order %d\n",FC,ORDER);
                                            printf("\n ====================================================================================================== \n");
                                            
                                            if(iter==1){
                                                printf("\n ====================================================== \n");
                                                printf("\n MYID = %d: STF inversion at first iteration \n",MYID);
                                            }
                                            else{
                                                printf("\n ================================================================================================ \n");
                                                printf("\n MYID = %d: STF inversion because of frequency step at the end of the last iteration \n",MYID);
                                            }
                                            
                                            if ((QUELLTYPB==1)|| (QUELLTYPB==2)){
                                                stf(FP,fulldata_vy,sectionvy_obs,sectionvy_conv,source_time_function,recpos,recpos_loc,ntr_glob,ntr,srcpos,ishot,ns,iter,nsrc_glob,FC);
                                            }
                                            if (QUELLTYPB==4){
                                                stf(FP,fulldata_p,sectionp_obs,sectionp_conv,source_time_function,recpos,recpos_loc,ntr_glob,ntr,srcpos,ishot,ns,iter,nsrc_glob,FC);
                                            }
                                        }
                                    }
                                }
                            }
                            
                            else{
                                if (INVMAT==0){
                                    if((INV_STF==1)&&(iter==N_STF_START)){
                                        
                                        if(ishot==nshots){
                                            N_STF_START=N_STF_START+N_STF;
                                        }
                                        
                                        if (nsrc_loc>0){
                                            printf("\n ====================================================== \n");
                                            printf("\n MYID = %d: STF inversion due to the increment N_STF \n",MYID);
                                            
                                            if ((QUELLTYPB==1)|| (QUELLTYPB==2)){
                                                inseis(fprec,ishot,sectionvy_obs,ntr_glob,ns,2,iter);
                                            }
                                            if (QUELLTYPB==4){
                                                inseis(fprec,ishot,sectionp_obs,ntr_glob,ns,9,iter);
                                            }
                                            
                                            if ((QUELLTYPB==1)|| (QUELLTYPB==2)){
                                                stf(FP,fulldata_vy,sectionvy_obs,sectionvy_conv,source_time_function,recpos,recpos_loc,ntr_glob,ntr,srcpos,ishot,ns,iter,nsrc_glob,FC);
                                            }
                                            if (QUELLTYPB==4){
                                                stf(FP,fulldata_p,sectionp_obs,sectionp_conv,source_time_function,recpos,recpos_loc,ntr_glob,ntr,srcpos,ishot,ns,iter,nsrc_glob,FC);
                                            }
                                        }
                                    }
                                }
                            }
                            
                            
                            MPI_Barrier(MPI_COMM_WORLD);
                            
                            
                        }
                        
                        /*------------------------------------------------------------------------------*/
                        /*----------- End of inversion of source time function -------------------------*/
                        /*------------------------------------------------------------------------------*/
                        
                        fprintf(FP,"\n==================================================================================\n");
                        fprintf(FP,"\n MYID=%d * Starting simulation (forward model) for shot %d of %d. Iteration %d ** \n",MYID,ishot,nshots,iter);
1526
                        fprintf(FP,"\n==================================================================================\n");
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
                        
                        for (nt=1;nt<=8;nt++) srcpos1[nt][1]=srcpos[nt][ishot];
                        
                        /*-----------------------------------*/
                        /* determine source position on grid */
                        /*-----------------------------------*/
                        if (RUN_MULTIPLE_SHOTS){
                            /* find this single source positions on subdomains */
                            if (nsrc_loc>0) free_matrix(srcpos_loc,1,8,1,1);
                            srcpos_loc=splitsrc(srcpos1,&nsrc_loc, 1);
                        }else{
                            /* Distribute multiple source positions on subdomains */
                            srcpos_loc = splitsrc(srcpos,&nsrc_loc, nsrc);
                        }
                        
Florian Wittkamp's avatar
Florian Wittkamp committed
1542
1543
1544
1545
1546
1547
                        if(INV_STF){
                            QUELLART=7;
                            fprintf(FP,"\n MYID=%d *****  Due to inversion of source time function QUELLART is switched to 7  ********** \n",MYID);
                            fprintf(FP,"\n MYID=%d *****  Using optimized source time function located in %s.shot%d  ********** \n\n\n",MYID,SIGNAL_FILE,ishot);
                        }
                        
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
                        MPI_Barrier(MPI_COMM_WORLD);
                        
                        /*-------------------*/
                        /* calculate wavelet */
                        /*-------------------*/
                        /* calculate wavelet for each source point P SV */
                        if(WAVETYPE==1||WAVETYPE==3){
                            signals=NULL;
                            signals=wavelet(srcpos_loc,nsrc_loc,ishot,0);
                        }
                        /* calculate wavelet for each source point SH */
                        if(WAVETYPE==2||WAVETYPE==3){
                            signals_SH=NULL;
                            signals_SH=wavelet(srcpos_loc,nsrc_loc,ishot,1);
                        }
                        
                        /*------------------------------------------------------------------------------*/
                        /*----------- Start of Time Domain Filtering -----------------------------------*/
                        /*------------------------------------------------------------------------------*/
                        
Florian Wittkamp's avatar
Florian Wittkamp committed
1568
                        if (((TIME_FILT==1) || (TIME_FILT==2)) && (QUELLART!=6) && (INV_STF==0)){
1569
                            fprintf(FP,"\n Time Domain Filter applied: Lowpass with corner frequency of %.2f Hz, order %d\n",FC,ORDER);
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
                            
                            /*time domain filtering of the source signal */
                            if(WAVETYPE==1||WAVETYPE==3) timedomain_filt(signals,FC,ORDER,nsrc_loc,ns,1);
                            if(WAVETYPE==2||WAVETYPE==3) timedomain_filt(signals_SH,FC,ORDER,nsrc_loc,ns,1);
                            
                            if(WAVETYPE==1||WAVETYPE==3){
                                if ((QUELLTYPB==1)|| (QUELLTYPB==2)){
                                    /*time domain filtering of the observed data sectionvy_obs */
                                    inseis(fprec,ishot,sectionvy_obs,ntr_glob,ns,2,iter);
                                    timedomain_filt(sectionvy_obs,FC,ORDER,ntr_glob,ns,1);
                                }
                                
                                if ((QUELLTYPB==1)|| (QUELLTYPB==3)){
                                    /*time domain filtering of the observed data sectionvx_obs */
                                    inseis(fprec,ishot,sectionvx_obs,ntr_glob,ns,1,iter);
                                    timedomain_filt(sectionvx_obs,FC,ORDER,ntr_glob,ns,1);
                                }
                                
                                if (QUELLTYPB==4){
                                    /*time domain filtering of the observed data sectionp_obs */
                                    inseis(fprec,ishot,sectionp_obs,ntr_glob,ns,9,iter);
                                    timedomain_filt(sectionp_obs,FC,ORDER,ntr_glob,ns,1);
                                }
                            }
                            
                            if(WAVETYPE==2||WAVETYPE==3){
                                /*time domain filtering of the observed data sectionvx_obs */
                                inseis(fprec,ishot,sectionvz_obs,ntr_glob,ns,10,iter);
                                timedomain_filt(sectionvz_obs,FC,ORDER,ntr_glob,ns,1);
                            }
                            
                        }
                        /*------------------------------------------------------------------------------*/
                        /*----------- End of Time Domain Filtering -------------------------------------*/
                        /*------------------------------------------------------------------------------*/
                        
                        MPI_Barrier(MPI_COMM_WORLD);
                        
Florian Wittkamp's avatar
Florian Wittkamp committed
1608
1609
                        
                        
1610
                        /* initialize wavefield with zero */
Florian Wittkamp's avatar
Florian Wittkamp committed
1611
1612
1613
1614
1615
                        if (L){
                            if(!ACOUSTIC) {
                                zero_fdveps_visc(-nd+1,NY+nd,-nd+1,NX+nd,pvx,pvy,pvz,psxx,psyy,psxy,psxz,psyz,ux,uy,uxy,pvxp1,pvyp1,psi_sxx_x,psi_sxy_x,psi_sxz_x,psi_vxx,psi_vyx,psi_vzx,psi_syy_y,psi_sxy_y,psi_syz_y,psi_vyy,psi_vxy,psi_vzy,psi_vxxs,pr,pp,pq,pt,po);
                            } else {
                                zero_fdveps_viscac(-nd+1, NY+nd, -nd+1, NX+nd, pvx, pvy, psp, pvxp1, pvyp1, psi_sxx_x, psi_sxy_x, psi_vxx, psi_vyx, psi_syy_y, psi_sxy_y, psi_vyy, psi_vxy, psi_vxxs, pp); }
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
                        }else{
                            if(!ACOUSTIC)
                                zero_fdveps(-nd+1,NY+nd,-nd+1,NX+nd,pvx,pvy,pvz,psxx,psyy,psxy,psxz,psyz,ux,uy,uxy,pvxp1,pvyp1,psi_sxx_x,psi_sxy_x,psi_sxz_x,psi_vxx,psi_vyx,psi_vzx,psi_syy_y,psi_sxy_y,psi_syz_y,psi_vyy,psi_vxy,psi_vzy,psi_vxxs);
                            else
                                zero_fdveps_ac(-nd+1,NY+nd,-nd+1,NX+nd,pvx,pvy,psp,pvxp1,pvyp1,psi_sxx_x,psi_sxy_x,psi_vxx,psi_vyx,psi_syy_y,psi_sxy_y,psi_vyy,psi_vxy,psi_vxxs);
                        }
                        
                        /*initialize gradient matrices for each shot with zeros PSV*/
                        if(WAVETYPE==1 || WAVETYPE==3) {
                            if(INVMAT==0){
1626
1627
                                for(j=1;j<=NY;j=j+IDY){
                                    for(i=1;i<=NX;i=i+IDX){
1628
1629
1630
1631
1632
                                        waveconv_shot[j][i]=0.0;
                                        waveconv_rho_shot[j][i]=0.0;
                                    }
                                }
                                if(!ACOUSTIC){
1633
1634
                                    for(j=1;j<=NY;j=j+IDY){
                                        for(i=1;i<=NX;i=i+IDX){
1635
1636
1637
1638
1639
1640
1641
1642
1643
                                            waveconv_u_shot[j][i]=0.0;
                                        }
                                    }
                                }
                            }
                        }
                        /*initialize gradient matrices for each shot with zeros SH*/
                        if(WAVETYPE==2 || WAVETYPE==3){
                            if(INVMAT==0){
1644
1645
                                for(j=1;j<=NY;j=j+IDY){
                                    for(i=1;i<=NX;i=i+IDX){
1646
1647
1648
1649
1650
1651
1652
1653
1654
                                        waveconv_rho_shot_z[j][i]=0.0;
                                        waveconv_u_shot_z[j][i]=0.0;
                                    }
                                }
                                
                            }
                        }
                        
                        if((EPRECOND==1)||(EPRECOND==3)&&(EPRECOND_ITER==iter||(EPRECOND_ITER==0))){
1655
1656
                            for(j=1;j<=NY;j=j+IDY){
                                for(i=1;i<=NX;i=i+IDX){
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
                                    if(WAVETYPE==1 || WAVETYPE==3){
                                        Ws[j][i]=0.0;
                                        Wr[j][i]=0.0;
                                        We[j][i]=0.0;
                                    }
                                    if(WAVETYPE==2 || WAVETYPE==3){
                                        Ws_SH[j][i]=0.0;
                                        Wr_SH[j][i]=0.0;
                                        We_SH[j][i]=0.0;
                                    }
                                }
                            }
                        }
                        
                        
                        lsnap=iround(TSNAP1/DT); lsamp=NDT; nsnap=0;
                        hin=1; hin1=1;
                        imat=1; imat1=1; imat2=1; hi=1;
                        
                        if((!VERBOSE)&&(MYID==0)) fprintf(FP,"\n ****************************************\n ");
                        
                        /*------------------------------------------------------------------------------*/
                        /*----------------------  start loop over timesteps (forward model) ------------*/
                        /*------------------------------------------------------------------------------*/
                        for (nt=1;nt<=NT;nt++){
                            
                            // Ratio to give output to stout
                            infoout = !(nt%nt_out);
                            
                            if((!VERBOSE)&&(MYID==0)) if(!(nt%(NT/40))) fprintf(FP,"*");
                            
                            /* Check if simulation is still stable P and SV */
                            if (WAVETYPE==1 || WAVETYPE==3) {
                                if (isnan(pvy[NY/2][NX/2])) {
                                    fprintf(FP,"\n Time step: %d; pvy: %f \n",nt,pvy[NY/2][NX/2]);
                                    err(" Simulation is unstable !");
                                }
                            }
                            
                            /* Check if simulation is still stable SH */
                            if (WAVETYPE==2 || WAVETYPE==3) {
                                if (isnan(pvz[NY/2][NX/2])) {
                                    fprintf(FP,"\n Time step: %d; pvy: %f \n",nt,pvy[NY/2][NX/2]);
                                    err(" Simulation is unstable !");
                                }
                            }
                            
                            
                            
                            if (MYID==0){
                                if (infoout)  fprintf(FP,"\n Computing timestep %d of %d \n",nt,NT);
                                time3=MPI_Wtime();
                            }
                            
                            
                            /* update of particle velocities */
                            if(!ACOUSTIC) {
                                if (WAVETYPE==1 || WAVETYPE==3) {
                                    update_v_PML(1, NX, 1, NY, nt, pvx, pvxp1, pvxm1, pvy, pvyp1, pvym1, uttx, utty, psxx, psyy, psxy, prip, prjp, srcpos_loc,signals,signals,nsrc_loc,absorb_coeff,hc,infoout,0, K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half, psi_sxx_x, psi_syy_y, psi_sxy_y, psi_sxy_x);
                                }
                                
                                if (WAVETYPE==2 || WAVETYPE==3) {
                                    update_v_PML_SH(1, NX, 1, NY, nt, pvz, pvzp1, pvzm1, psxz, psyz,prjp, srcpos_loc, signals, signals_SH, nsrc_loc, absorb_coeff,hc,infoout,0, K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half, psi_sxz_x, psi_syz_y);
                                }
Florian Wittkamp's avatar
Florian Wittkamp committed
1721
                            } else {
1722
                                update_v_acoustic_PML(1, NX, 1, NY, nt, pvx, pvxp1, pvxm1, pvy, pvyp1, pvym1, psp, prip, prjp, srcpos_loc,signals,signals,nsrc_loc,absorb_coeff,hc,infoout,0, K_x_half, a_x_half, b_x_half, K_y_half, a_y_half, b_y_half, psi_sxx_x, psi_syy_y);