update_p_PML.c 4.6 KB
Newer Older
Tilman Steinweg's avatar
Tilman Steinweg committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/*-----------------------------------------------------------------------------------------
 * Copyright (C) 2013  For the list of authors, see file AUTHORS.
 *
 * This file is part of DENISE.
 * 
 * DENISE is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, version 2.0 of the License only.
 * 
 * DENISE is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with DENISE. See file COPYING and/or <http://www.gnu.org/licenses/gpl-2.0.html>.
-----------------------------------------------------------------------------------------*/

/* $Id: update_s_elastic_ssg.c,v 1.1.1.1 2007/11/21 22:44:52 koehn Exp $*/
/*------------------------------------------------------------------------
 *   updating stress components at gridpoints [nx1...nx2][ny1...ny2]
 *   by a staggered grid finite difference scheme of arbitrary (FDORDER) order accuracy in space
 *   and second order accuracy in time
 *   T. Bohlen
 *
 *  ----------------------------------------------------------------------*/

#include "fd.h"

void update_p_PML(int nx1, int nx2, int ny1, int ny2,
	float **  vx, float **   vy, float **  sp, float ** pi, float ** absorb_coeff, float **rho, float *hc, int infoout,
      float * K_x, float * a_x, float * b_x, float * K_x_half, float * a_x_half, float * b_x_half,
      float * K_y, float * a_y, float * b_y, float * K_y_half, float * a_y_half, float * b_y_half,
      float ** psi_vxx, float ** psi_vyy, float ** psi_vxy, float ** psi_vyx){


	int i,j, m, fdoh, h, h1;
	float g;
	float  vxx, vyy, vxy, vyx;
	float  dhi;	
	extern float DT, DH;
	extern int MYID, FDORDER, INVMAT1, FW;
        extern int FREE_SURF, BOUNDARY;
	extern int NPROCX, NPROCY, POS[3];
	extern FILE *FP;
	double time1, time2;
	
	

	dhi = DT/DH;
	fdoh = FDORDER/2;

	
	if (infoout && (MYID==0)){
		time1=MPI_Wtime();
		fprintf(FP,"\n **Message from update_p (printed by PE %d):\n",MYID);
		fprintf(FP," Updating stress components ...");
	}
	


	switch (FDORDER){

	case 2:
		for (j=ny1;j<=ny2;j++){
			for (i=nx1;i<=nx2;i++){
			vxx = (  hc[1]*(vx[j][i]  -vx[j][i-1]))*dhi;
                        vyy = (  hc[1]*(vy[j][i]  -vy[j-1][i]))*dhi; 

        /* left boundary */                                         
        if((!BOUNDARY) && (POS[1]==0) && (i<=FW)){
                        
                        psi_vxx[j][i] = b_x[i] * psi_vxx[j][i] + a_x[i] * vxx;
                        vxx = vxx / K_x[i] + psi_vxx[j][i];

         }

        /* right boundary */                                         
        if((!BOUNDARY) && (POS[1]==NPROCX-1) && (i>=nx2-FW+1)){
		
                        h1 = (i-nx2+2*FW);
                        h = i;
                        
                        psi_vxx[j][h1] = b_x[h1] * psi_vxx[j][h1] + a_x[h1] * vxx;
                        vxx = vxx / K_x[h1] + psi_vxx[j][h1]; 
                                           
         }

	  /* top boundary */                                         
        if((POS[2]==0) && (!(FREE_SURF)) && (j<=FW)){
                                                
                        psi_vyy[j][i] = b_y[j] * psi_vyy[j][i] + a_y[j] * vyy;                                            
                        vyy = vyy / K_y[j] + psi_vyy[j][i];

        }
	
	  /* bottom boundary */                                         
        if((POS[2]==NPROCY-1) && (j>=ny2-FW+1)){

                        h1 = (j-ny2+2*FW);                                        
                        h = j;
                                                
                        psi_vyy[h1][i] = b_y[h1] * psi_vyy[h1][i] + a_y[h1] * vyy;                                            
                        vyy = vyy / K_y[h1] + psi_vyy[h1][i];
                        
        }
				
			      /* lambda - mu relationship*/
			if (INVMAT1==1){
				g = rho[j][i] * (pi[j][i] * pi[j][i]);}
			
			sp[j][i] += g*(vxx+vyy);
			
			}
		}
		break;
		
	default:
		for (j=ny1;j<=ny2;j++){
			for (i=nx1;i<=nx2;i++){
				vxx = 0.0;
				vyy = 0.0;
				for (m=1; m<=fdoh; m++) {
					vxx += hc[m]*(vx[j][i+m-1] -vx[j][i-m]  );
					vyy += hc[m]*(vy[j+m-1][i] -vy[j-m][i]  );
				}	
	
				g=pi[j][i]*DT;	

				sp[j][i]+=(g*(vxx+vyy))*dhi;
			}
		}
		break;
		
	} /* end of switch(FDORDER) */


	if (infoout && (MYID==0)){
		time2=MPI_Wtime();
		fprintf(FP," finished (real time: %4.2f s).\n",time2-time1);
	}
}