update_s_visc_PML_SH.c 5.98 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/*-----------------------------------------------------------------------------------------
 * Copyright (C) 2013  For the list of authors, see file AUTHORS.
 *
 * This file is part of DENISE.
 *
 * DENISE is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, version 2.0 of the License only.
 *
 * DENISE is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with DENISE. See file COPYING and/or <http://www.gnu.org/licenses/gpl-2.0.html>.
 -----------------------------------------------------------------------------------------*/

/*------------------------------------------------------------------------
 *   updating stress components at gridpoints [nx1...nx2][ny1...ny2]
 *   by a staggered grid finite difference scheme of arbitrary (FDORDER) order accuracy in space
 *   and second order accuracy in time
 *   T. Bohlen
 *
 *   SH-Version
 *
 *  ----------------------------------------------------------------------*/

#include "fd.h"

void update_s_visc_PML_SH(int nx1, int nx2, int ny1, int ny2, float **  vz, float **   sxz, float **   syz, float ***t, float ***o, float ** uip, float ** ujp, float ** tausip, float ** tausjp, float *bip, float *bjm, float *cip, float *cjm, float *etajm, float *etaip, float *hc,  int infoout,float * K_x, float * a_x, float * b_x, float * K_x_half, float * a_x_half, float * b_x_half,
                          float * K_y, float * a_y, float * b_y, float * K_y_half, float * a_y_half, float * b_y_half,float ** psi_vzx, float ** psi_vzy){
    
    int i,j, m, fdoh, h, h1, l;
    
    float vzx, vzy;
    
    float  dhi, dthalbe;
    extern float DT, DH;
    extern int MYID, FDORDER, FW, L;
    extern int FREE_SURF, BOUNDARY;
    extern int NPROCX, NPROCY, POS[3];
    extern FILE *FP;
    double time1, time2;
    
    float sumo=0.0, sumt=0.0;
    
    
    
    /*dhi = DT/DH;*/
    dhi=1.0/DH;
    fdoh = FDORDER/2;
    dthalbe = DT/2.0;
    
    
    if (infoout && (MYID==0)){
        time1=MPI_Wtime();
        fprintf(FP,"\n **Message from update_s_SH (printed by PE %d):\n",MYID);
        fprintf(FP," Updating stress components ...");
    }
    
    
    fprintf(FP," CHECK MATERIAL PARAMETER CHECK MATERIAL PARAMETER \n");
    switch (FDORDER){
            
        case 2:
            break;
            
        case 4:
            for (j=ny1;j<=ny2;j++){
                for (i=nx1;i<=nx2;i++){
                    vzx = (  hc[1]*(vz[j][i+1]-vz[j][i])
                           + hc[2]*(vz[j][i+2]-vz[j][i-1]))*dhi;
                    
                    vzy = (  hc[1]*(vz[j+1][i]-vz[j][i])
                           + hc[2]*(vz[j+2][i]-vz[j-1][i]))*dhi;
                    
                    
                    /* left boundary */
                    if((!BOUNDARY) && (POS[1]==0) && (i<=FW)){
                        psi_vzx[j][i] = b_x_half[i] * psi_vzx[j][i] + a_x_half[i] * vzx;
                        vzx = vzx / K_x_half[i] + psi_vzx[j][i];
                    }
                    
                    /* right boundary */
                    if((!BOUNDARY) && (POS[1]==NPROCX-1) && (i>=nx2-FW+1)){
                        h1 = (i-nx2+2*FW);
                        h = i;
                        psi_vzx[j][h1] = b_x_half[h1] * psi_vzx[j][h1] + a_x_half[h1] * vzx;
                        vzx = vzx / K_x_half[h1] + psi_vzx[j][h1];
                    }
                    
                    /* top boundary */
                    if((POS[2]==0) && (!(FREE_SURF)) && (j<=FW)){
                        psi_vzy[j][i] = b_y[j] * psi_vzy[j][i] + a_y[j] * vzy;
                        vzy = vzy / K_y[j] + psi_vzy[j][i];
                    }
                    
                    /* bottom boundary */
                    if((POS[2]==NPROCY-1) && (j>=ny2-FW+1)){
                        h1 = (j-ny2+2*FW);
                        h = j;
                        psi_vzy[h1][i] = b_y[h1] * psi_vzy[h1][i] + a_y[h1] * vzy;
                        vzy = vzy / K_y[h1] + psi_vzy[h1][i];
                    }
                    
                    
                    
                    /* computing sums of the old memory variables */
                    sumt=sumo=0.0;
                    for (l=1;l<=L;l++){
                        sumo+=o[j][i][l];
                        sumt+=t[j][i][l];
                    }
                    
                    /* updating components of the stress tensor, partially */
                    sxz[j][i]+=(uip[j][i]*DT*(1.0+L*tausip[j][i])*vzx)+(dthalbe*sumo);
                    syz[j][i]+=(ujp[j][i]*DT*(1.0+L*tausjp[j][i])*vzy)+(dthalbe*sumt);
                    
                    
                    /* now updating the memory-variables and sum them up*/
                    sumt=sumo=0.0;
                    for (l=1;l<=L;l++){
                        o[j][i][l]=bip[l]*(o[j][i][l]*cip[l]-(uip[j][i]*etaip[l]*tausip[j][i]*vzx));
                        t[j][i][l]=bjm[l]*(t[j][i][l]*cjm[l]-(ujp[j][i]*etajm[l]*tausjp[j][i]*vzy));
                        sumt+=t[j][i][l];
                        sumo+=o[j][i][l];
                    }
                    
                    /* and now the components of the stress tensor are
                     completely updated */
                    sxz[j][i]+=(dthalbe*sumo);
                    syz[j][i]+=(dthalbe*sumt);
                    //fprintf(FP," Signal: %f\n",sxz[j][i]);
                }
            }
            break;
            
        case 6:
            break;
            
        case 8:
            break;
            
        default:
            break;
            
    } /* end of switch(FDORDER) */
    
    
    if (infoout && (MYID==0)){
        time2=MPI_Wtime();
        fprintf(FP," finished (real time: %4.2f s).\n",time2-time1);
    }
}