update_v_acoustic_PML.c 7.6 KB
Newer Older
Tilman Steinweg's avatar
Tilman Steinweg committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/*-----------------------------------------------------------------------------------------
 * Copyright (C) 2013  For the list of authors, see file AUTHORS.
 *
 * This file is part of DENISE.
 * 
 * DENISE is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, version 2.0 of the License only.
 * 
 * DENISE is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with DENISE. See file COPYING and/or <http://www.gnu.org/licenses/gpl-2.0.html>.
-----------------------------------------------------------------------------------------*/

/* $Id: update_v_ssg.c,v 1.1.1.1 2007/11/21 22:44:52 koehn Exp $*/
/*------------------------------------------------------------------------
 *   updating particle velocities at gridpoints [nx1...nx2][ny1...ny2]
 *   by a staggered grid finite difference scheme of FDORDER accuracy in space
 *   and second order accuracy in time
 *   T. Bohlen 
 *
 *  ----------------------------------------------------------------------*/

#include "fd.h"



void update_v_acoustic_PML(int nx1, int nx2, int ny1, int ny2, int nt,
	float **  vx, float **  vxp1, float **  vxm1, float ** vy, float **  vyp1, float **  vym1, float ** sp,
	float  **rip, float **rjp, float **  srcpos_loc, float ** signals, float ** signals1, int nsrc, float ** absorb_coeff,
	float *hc, int infoout,int sw, float * K_x_half, float * a_x_half, float * b_x_half,
        float * K_y_half, float * a_y_half, float * b_y_half,
        float ** psi_sxx_x, float ** psi_syy_y){

	int i, j,l,fdoh,m, h, h1;
	float amp, dtdh, azi_rad;
	float vxtmp, vytmp;
        float sp_x, sp_y;
	
	extern float DT, DH;
	double time1, time2;
	extern int MYID, QUELLTYP, QUELLTYPB, CHECKPTREAD, FDORDER;
        extern int FDORDER, INVMAT1;
        extern int FREE_SURF, BOUNDARY, FW;
        extern int NPROCX, NPROCY, POS[3];
	extern FILE *FP;
	extern int VELOCITY;

	
	fdoh = FDORDER/2;
	dtdh = DT*DT/DH;
        
     /* drad = PI/180.0; 
        angle = 135.0; */
         
	if (infoout && (MYID==0)){
		time1=MPI_Wtime();
		fprintf(FP,"\n **Message from update_v (printed by PE %d):\n",MYID);
		fprintf(FP," Updating particle velocities ...");
	}

	
			
	/* ------------------------------------------------------------
	 * Important!
	 * rip and rjp are reciprocal values of averaged densities
	 * ------------------------------------------------------------ */

	switch (FDORDER){
	case 2:
		for (j=ny1;j<=ny2;j++){
			for (i=nx1;i<=nx2;i++){
                           sp_x = hc[1]*(sp[j][i+1]-sp[j][i]);
                           sp_y = hc[1]*(sp[j+1][i]-sp[j][i]);
                          

	/* left boundary */                                         
        if((!BOUNDARY) && (POS[1]==0) && (i<=FW)){
			         
                           psi_sxx_x[j][i] = b_x_half[i] * psi_sxx_x[j][i] + a_x_half[i] * sp_x;                                                
                           sp_x = sp_x / K_x_half[i] + psi_sxx_x[j][i];
              
         }

        /* right boundary */                                         
        if((!BOUNDARY) && (POS[1]==NPROCX-1) && (i>=nx2-FW+1)){

                           h1 = (i-nx2+2*FW);
                            h=i; 
                                
                           /*psi_sxx_x[j][i] = b_x_half[i] * psi_sxx_x[j][i] + a_x_half[i] * sxx_x;                                                
                           sxx_x = sxx_x / K_x_half[i] + psi_sxx_x[j][i];*/
                           
                           psi_sxx_x[j][h1] = b_x_half[h1] * psi_sxx_x[j][h1] + a_x_half[h1] * sp_x;                                                
			   sp_x = sp_x / K_x_half[h1] + psi_sxx_x[j][h1];
         }

         
	  /* top boundary */                                         
        if((POS[2]==0) && (!(FREE_SURF)) && (j<=FW)){
		
		           psi_syy_y[j][i] = b_y_half[j] * psi_syy_y[j][i] + a_y_half[j] * sp_y;                                                
                           sp_y = sp_y / K_y_half[j] + psi_syy_y[j][i];
		
         }
		

	  /* bottom boundary */                                         
        if((POS[2]==NPROCY-1) && (j>=ny2-FW+1)){
                        
                           h1 = (j-ny2+2*FW);
		            h = j;
		            			   
       		           /*psi_syy_y[j][i] = b_y_half[j] * psi_syy_y[j][i] + a_y_half[j] * syy_y;                                                
                           syy_y = syy_y / K_y_half[j] + psi_syy_y[j][i];*/
                           
                           psi_syy_y[h1][i] = b_y_half[h1] * psi_syy_y[h1][i] + a_y_half[h1] * sp_y;                                                
			   sp_y = sp_y / K_y_half[h1] + psi_syy_y[h1][i];

        }                       
                           
                           if(sw==0){
			   if (VELOCITY==0){
                           	vxp1[j][i] = rip[j][i]*(sp_x)/DH;
                           	vyp1[j][i] = rjp[j][i]*(sp_y)/DH;}
			   else{
			   	vxp1[j][i] = rip[j][i]*(sp_x)/DH;
                           	vyp1[j][i] = rjp[j][i]*(sp_y)/DH;}
			   }
                           
                           if(sw==1){
			   if (VELOCITY==0){
			   	vxp1[j][i] += vx[j][i]*DT;
			   	vyp1[j][i] += vy[j][i]*DT;}
			   else{
			   	vxp1[j][i] = vx[j][i];
			   	vyp1[j][i] = vy[j][i];}
			   }
                           
                           vx[j][i] += DT*rip[j][i]*(sp_x)/DH;
		           vy[j][i] += DT*rjp[j][i]*(sp_y)/DH; 		         
      
     }
}
		break;
		
	default:
		for (j=ny1;j<=ny2;j++){
			for (i=nx1;i<=nx2;i++){
				vxtmp = 0;
				vytmp = 0;
				for (m=1; m<=fdoh; m++) {
					vxtmp +=   hc[m]*( sp[j][i+m]   - sp[j][i-m+1] );
							
					vytmp +=   hc[m]*( sp[j+m][i]   - sp[j-m+1][i] );
				}
					
				vx[j][i] += vxtmp*dtdh*rip[j][i];
				vy[j][i] += vytmp*dtdh*rjp[j][i];
			}
		}
		break;

	} /* end of switch(FDORDER) */


 		/* Forward Modelling (sw==0) */
	        if(sw==0){
	        for (l=1;l<=nsrc;l++) {
		    i=(int)srcpos_loc[1][l];
		    j=(int)srcpos_loc[2][l];
		    azi_rad=srcpos_loc[7][l]*PI/180;
		    QUELLTYP=(int)srcpos_loc[8][l];
		
		    if(QUELLTYP==2){vx[j][i] += (DT*rip[j][i]*signals1[l][nt])/(DH*DH);}  /* single force in x */
		    if(QUELLTYP==3){vy[j][i] += (DT*rjp[j][i]*signals1[l][nt])/(DH*DH);}  /* single force in y */
		    if(QUELLTYP==4){vx[j][i] += (DT*rip[j][i]*sin(azi_rad) * signals[l][nt])/(DH*DH);    /* rotated force in x */
		                    vy[j][i] += (DT*rjp[j][i]*cos(azi_rad) * signals[l][nt])/(DH*DH);}  /* rotated force in y */          
		              
		}}
		
		/* Backpropagation (sw==1) */
		if(sw==1){
		for (l=1;l<=nsrc;l++) {
		    i=(int)srcpos_loc[1][l];
		    j=(int)srcpos_loc[2][l];
		    
		    if(QUELLTYPB==1){vx[j][i] += signals[l][nt];    /* single force in x */
		                     vy[j][i] += signals1[l][nt];}  /* + single force in y */

		    if(QUELLTYPB==2){vy[j][i] += signals1[l][nt];}  /* single force in y */
		    if(QUELLTYPB==3){vx[j][i] += signals[l][nt];}   /* single force in x */

		}}                         
			
	
	/*if (FW>0.0)
	for (j=ny1;j<=ny2;j++){
		for (i=nx1;i<=nx2;i++){
			vx[j][i]*=absorb_coeff[j][i];
			vy[j][i]*=absorb_coeff[j][i];
			sxy[j][i]*=absorb_coeff[j][i];
			sxx[j][i]*=absorb_coeff[j][i];
			syy[j][i]*=absorb_coeff[j][i];
		
	}}*/

	if (infoout && (MYID==0)){
		time2=MPI_Wtime();
		fprintf(FP," finished (real time: %4.2f s).\n",time2-time1);
	}
}