surface_PML.c 6.29 KB
Newer Older
tilman.metz's avatar
tilman.metz committed
1
/*-----------------------------------------------------------------------------------------
2
 * Copyright (C) 2016  For the list of authors, see file AUTHORS.
tilman.metz's avatar
tilman.metz committed
3
 *
Florian Wittkamp's avatar
Florian Wittkamp committed
4
 * This file is part of IFOS.
5
 *
Florian Wittkamp's avatar
Florian Wittkamp committed
6
 * IFOS is free software: you can redistribute it and/or modify
tilman.metz's avatar
tilman.metz committed
7 8
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, version 2.0 of the License only.
9
 *
Florian Wittkamp's avatar
Florian Wittkamp committed
10
 * IFOS is distributed in the hope that it will be useful,
tilman.metz's avatar
tilman.metz committed
11 12 13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
14
 *
tilman.metz's avatar
tilman.metz committed
15
 * You should have received a copy of the GNU General Public License
Florian Wittkamp's avatar
Florian Wittkamp committed
16
 * along with IFOS. See file COPYING and/or <http://www.gnu.org/licenses/gpl-2.0.html>.
17
 -----------------------------------------------------------------------------------------*/
tilman.metz's avatar
tilman.metz committed
18 19

/*------------------------------------------------------------------------
20
 *   stress free surface condition *
tilman.metz's avatar
tilman.metz committed
21 22 23 24 25
 *  ----------------------------------------------------------------------*/

#include "fd.h"

void surface_PML(int ndepth, float ** vx, float ** vy, float ** sxx, float ** syy,
26
                 float ** sxy, float ** syz, float ***p, float ***q, float  **  ppi, float  **  pu, float **prho, float **ptaup, float **ptaus, float *etajm, float *peta, float * hc, float * K_x, float * a_x, float * b_x, float ** psi_vxx,
27
                 float ** ux, float ** uy, float ** uxy, float ** uyz,float ** sxz,float **uxz){
28 29 30 31 32 33 34
    
    
    int i,j,m,h,h1,l;
    int fdoh;
    float bjm, djm, e, fjm, g;
    float  vxx, vyy, sump=0.0;
    float  dh24, dthalbe;
35
    float *pts = NULL, ws, sumu = 0.0, sumpi = 0.0, mu = 0.0, pi = 0.0;
36
    extern float DT, DH, *FL;
37
    extern int NX, PARAMETERIZATION, L;
38 39
    extern int FW, BOUNDARY;
    extern int NPROCX, NPROCY, POS[3], MYID;
40
    extern int FDORDER,WAVETYPE;
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    extern float F_REF;
    
    fdoh = FDORDER/2;
    dthalbe=DT/2.0;
    dh24=1.0/DH;
    
    if (WAVETYPE==1||WAVETYPE==3){
        /* vector for maxwellbodies */
        pts=vector(1,L);
        for (l=1;l<=L;l++) {
            pts[l]=1.0/(2.0*PI*FL[l]);
        }
        
        
        /*ws=2.0*PI*FL[1];*/
        ws=2.0*PI*F_REF;
        
        sumu=0.0;
        sumpi=0.0;
        for (l=1;l<=L;l++){
            sumu=sumu+((ws*ws*pts[l]*pts[l])/(1.0+ws*ws*pts[l]*pts[l]));
            sumpi=sumpi+((ws*ws*pts[l]*pts[l])/(1.0+ws*ws*pts[l]*pts[l]));
        }
    }
    
    
    j=ndepth;     /* The free surface is located exactly in y=1/2*dh !! */
    if (WAVETYPE==1||WAVETYPE==3){
        for (i=1;i<=NX;i++){
            for (l=1;l<=L;l++){
                etajm[l]=peta[l];
            }
            
            /*Mirroring the components of the stress tensor to make
             a stress free surface (method of imaging)*/
            syy[j][i]=0.0;
            uy[j][i]=0.0;
            
            /* since syy is zero on the free surface also the
             corresponding memory-variables must set to zero */
            for (l=1;l<=L;l++) q[j][i][l]=0.0;
            
            /* now updating the stress component sxx and the memory-
             variables p[j][i][l] at the free surface */
            
            /* first calculate spatial derivatives of components
             of particle velocities */
            
            vxx = 0.0;
            vyy = 0.0;
            for (m=1; m<=fdoh; m++) {
tilman.metz's avatar
tilman.metz committed
92
                
93 94 95 96
                /*Mirroring the components of the stress tensor to make
                 a stress free surface (method of imaging)*/
                syy[j-m][i]=-syy[j+m][i];
                sxy[j-m][i]=-sxy[j+m-1][i];
tilman.metz's avatar
tilman.metz committed
97
                
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
                uy[j-m][i]=-uy[j+m][i];
                uxy[j-m][i]=-uxy[j+m-1][i];
                
                vxx += hc[m]*(vx[j][i+m-1] -vx[j][i-m]);
                vyy += hc[m]*(vy[j+m-1][i] -vy[j-m][i]);
            }
            vxx *= dh24;
            vyy *= dh24;
            
            /* apply PML boundary */
            /* left boundary */
            if((!BOUNDARY) && (POS[1]==0) && (i<=FW)){
                
                psi_vxx[j][i] = b_x[i] * psi_vxx[j][i] + a_x[i] * vxx;
                vxx = vxx / K_x[i] + psi_vxx[j][i];
            }
            
            /* right boundary */
            if((!BOUNDARY) && (POS[1]==NPROCX-1) && (i>=NX-FW+1)){
                
                h1 = (i-NX+2*FW);
                h = i;
                
                psi_vxx[j][h1] = b_x[h1] * psi_vxx[j][h1] + a_x[h1] * vxx;
                vxx = vxx / K_x[h1] + psi_vxx[j][h1];
            }
            
125
            if (PARAMETERIZATION==1){
126 127 128
                mu=(pu[j][i]*pu[j][i]*prho[j][i])/(1.0+sumu*ptaus[j][i]);
                pi=(ppi[j][i]*ppi[j][i]*prho[j][i])/(1.0+sumpi*ptaup[j][i]);
            }
129
            if (PARAMETERIZATION==3){
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
                mu=pu[j][i]/(1.0+sumu*ptaus[j][i]);
                pi=(ppi[j][i]+2*pu[j][i])/(1.0+sumpi*ptaup[j][i]);
            }
            
            /* sums used in updating sxx */
            sump=0.0;
            for (l=1;l<=L;l++) sump+=p[j][i][l];
            
            
            fjm=mu*2.0*(1.0+L*ptaus[j][i]);
            g=pi*(1.0+L*ptaup[j][i]);
            
            /* partially updating sxx */
            sxx[j][i]+= -(DT*(g-fjm)*(g-fjm)*vxx/g)-(DT*(g-fjm)*vyy)-(dthalbe*sump);
            ux[j][i]+= -((g-fjm)*(g-fjm)*vxx/g)-((g-fjm)*vyy)-(0.5*sump);
            
            /* updating the memory-variable p[j][i][l] at the free surface */
            sump=0.0;
            for (l=1;l<=L;l++){
                bjm=etajm[l]/(1.0+(etajm[l]*0.5));
                djm=2.0*mu*ptaus[j][i];
                e=pi*ptaup[j][i];
                p[j][i][l]+=bjm*(((djm-e)*((fjm/g)-1.0)*vxx)-((djm-e)*vyy));
                sump+=p[j][i][l];
            }
            /*completely updating the stress sxx */
            sxx[j][i]+=(dthalbe*sump);
            ux[j][i]+=(0.5*sump);
        }
    }
    if (WAVETYPE==2||WAVETYPE==3){
        for (i=1;i<=NX;i++){
162 163 164 165 166 167 168 169 170
            
            syz[j][i]=0.0;
            uyz[j][i]=0.0;
            for (m=1; m<=fdoh; m++) {
                syz[j-m][i]=-syz[j+m][i];
                sxz[j-m][i]=-sxz[j+m-1][i];
                
                uyz[j-m][i]=-uyz[j+m][i];
                uxz[j-m][i]=-uxz[j+m-1][i];
171 172 173 174 175 176
            }
        }
    }
    if (WAVETYPE==1||WAVETYPE==3){
        free_vector(pts,1,L);
    }
tilman.metz's avatar
tilman.metz committed
177
}