matcopy_viscac.c 5.06 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
 /*-----------------------------------------------------------------------------------------
 * Copyright (C) 2013  For the list of authors, see file AUTHORS.
 *
 * This file is part of DENISE.
 * 
 * DENISE is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, version 2.0 of the License only.
 * 
 * DENISE is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with DENISE. See file COPYING and/or <http://www.gnu.org/licenses/gpl-2.0.html>.
-----------------------------------------------------------------------------------------*/

/*------------------------------------------------------------------------
 * For the averaging of material properties each process requires values
 * at the indices 0 and NX+1 etc. These lie on the neighbouring processes.
 * Thus, they have to be copied which is done by this function.
 *
 *   last update 12/02/02, T. Bohlen
 *
 *  ----------------------------------------------------------------------*/

#include "fd.h"

void matcopy_viscac(float ** rho, float ** pi, float ** taup){

	extern int MYID, NX, NY, INDEX[5];
	extern const int TAG1,TAG2,TAG5,TAG6;
	extern FILE *FP;


	MPI_Status status;	
	double time1, time2;	
	int i, j;
	float ** bufferlef_to_rig, ** bufferrig_to_lef;
	float ** buffertop_to_bot, ** bufferbot_to_top;

	bufferlef_to_rig = matrix(0,NY+1,1,5);
	bufferrig_to_lef = matrix(0,NY+1,1,5);
	buffertop_to_bot = matrix(0,NX+1,1,5);
	bufferbot_to_top = matrix(0,NX+1,1,5);
	
	
	fprintf(FP,"\n\n **Message from matcopy (written by PE %d):",MYID);
	fprintf(FP,"\n Copy material properties at inner boundaries ... \n");
	time1=MPI_Wtime();




//	if (POS[2]!=0)	/* no boundary exchange at top of global grid */
	for (i=0;i<=NX+1;i++){
			/* storage of top of local volume into buffer */
			buffertop_to_bot[i][1]  =  rho[1][i];
			buffertop_to_bot[i][2]  =  pi[1][i];
			buffertop_to_bot[i][5]  = taup[1][i];
	}


//	if (POS[2]!=NPROCY-1)	/* no boundary exchange at bottom of global grid */
	for (i=0;i<=NX+1;i++){
			
			/* storage of bottom of local volume into buffer */
			bufferbot_to_top[i][1]  =  rho[NY][i];
			bufferbot_to_top[i][2]  =  pi[NY][i];
			bufferbot_to_top[i][5]  = taup[NY][i];
	}


 	/*=========sending and receiving of the boundaries==========*/

	MPI_Bsend(&buffertop_to_bot[1][1],NX*5,MPI_FLOAT,INDEX[3],TAG5,MPI_COMM_WORLD);
	MPI_Barrier(MPI_COMM_WORLD);
	MPI_Recv(&buffertop_to_bot[1][1],NX*5,MPI_FLOAT,INDEX[4],TAG5,MPI_COMM_WORLD,&status);
	MPI_Bsend(&bufferbot_to_top[1][1],NX*5,MPI_FLOAT,INDEX[4],TAG6,MPI_COMM_WORLD);
	MPI_Barrier(MPI_COMM_WORLD);
	MPI_Recv(&bufferbot_to_top[1][1],NX*5,MPI_FLOAT,INDEX[3],TAG6,MPI_COMM_WORLD,&status);   


//	if (POS[2]!=NPROCY-1)	/* no boundary exchange at bottom of global grid */
	for (i=0;i<=NX+1;i++){
			rho[NY+1][i] = 	buffertop_to_bot[i][1];
			pi[NY+1][i] = 	buffertop_to_bot[i][2];
			taup[NY+1][i] = buffertop_to_bot[i][5];
	}

//	if (POS[2]!=0)	/* no boundary exchange at top of global grid */
	for (i=0;i<=NX+1;i++){
			rho[0][i] = 	bufferbot_to_top[i][1];
			pi[0][i] = 	bufferbot_to_top[i][2];
			taup[0][i] = 	bufferbot_to_top[i][5];
	}




//	if (POS[1]!=0)	/* no boundary exchange at left edge of global grid */
		for (j=0;j<=NY+1;j++)
		{
			/* storage of left edge of local volume into buffer */
			bufferlef_to_rig[j][1] =  rho[j][1];
			bufferlef_to_rig[j][2] =  pi[j][1];
			bufferlef_to_rig[j][5] =  taup[j][1];
		}


//	if (POS[1]!=NPROCX-1)	/* no boundary exchange at right edge of global grid */
	for (j=0;j<=NY+1;j++){
			/* storage of right edge of local volume into buffer */
			bufferrig_to_lef[j][1] =  rho[j][NX];
			bufferrig_to_lef[j][2] =  pi[j][NX];
			bufferrig_to_lef[j][5] =  taup[j][NX];
	}



 	MPI_Bsend(&bufferlef_to_rig[0][1],(NY+2)*5,MPI_FLOAT,INDEX[1],TAG1,MPI_COMM_WORLD);
	MPI_Barrier(MPI_COMM_WORLD);
	MPI_Recv(&bufferlef_to_rig[0][1],(NY+2)*5,MPI_FLOAT,INDEX[2],TAG1,MPI_COMM_WORLD,&status);
	MPI_Bsend(&bufferrig_to_lef[0][1],(NY+2)*5,MPI_FLOAT,INDEX[2],TAG2,MPI_COMM_WORLD);
	MPI_Barrier(MPI_COMM_WORLD);
	MPI_Recv(&bufferrig_to_lef[0][1],(NY+2)*5,MPI_FLOAT,INDEX[1],TAG2,MPI_COMM_WORLD,&status);


//	if (POS[1]!=NPROCX-1)	/* no boundary exchange at right edge of global grid */
	for (j=0;j<=NY+1;j++){
			rho[j][NX+1] = 	bufferlef_to_rig[j][1];
			pi[j][NX+1] = 	bufferlef_to_rig[j][2];
			taup[j][NX+1] = bufferlef_to_rig[j][5];
	}

//	if (POS[1]!=0)	/* no boundary exchange at left edge of global grid */
	for (j=0;j<=NY+1;j++){
			rho[j][0] = 	bufferrig_to_lef[j][1];
			pi[j][0] = 	bufferrig_to_lef[j][2];
			taup[j][0] = 	bufferrig_to_lef[j][5];
	}


	if (MYID==0){
		time2=MPI_Wtime();
		fprintf(FP," finished (real time: %4.2f s).\n",time2-time1);
	}

	free_matrix(bufferlef_to_rig,0,NY+1,1,5);
	free_matrix(bufferrig_to_lef,0,NY+1,1,5);
	free_matrix(buffertop_to_bot,0,NX+1,1,5);
	free_matrix(bufferbot_to_top,0,NX+1,1,5);
}