IFOS2D.c 244 KB
Newer Older
Tilman Steinweg's avatar
Tilman Steinweg committed
1
/*-----------------------------------------------------------------------------------------
2
 * Copyright (C) 2016  For the list of authors, see file AUTHORS.
Tilman Steinweg's avatar
Tilman Steinweg committed
3
 *
Florian Wittkamp's avatar
Florian Wittkamp committed
4
 * This file is part of IFOS.
5
 *
Florian Wittkamp's avatar
Florian Wittkamp committed
6
 * IFOS is free software: you can redistribute it and/or modify
Tilman Steinweg's avatar
Tilman Steinweg committed
7 8
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, version 2.0 of the License only.
9
 *
Florian Wittkamp's avatar
Florian Wittkamp committed
10
 * IFOS is distributed in the hope that it will be useful,
Tilman Steinweg's avatar
Tilman Steinweg committed
11 12 13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
14
 *
Tilman Steinweg's avatar
Tilman Steinweg committed
15
 * You should have received a copy of the GNU General Public License
Florian Wittkamp's avatar
Florian Wittkamp committed
16
 * along with IFOS. See file COPYING and/or <http://www.gnu.org/licenses/gpl-2.0.html>.
17
 -----------------------------------------------------------------------------------------*/
Tilman Steinweg's avatar
Tilman Steinweg committed
18 19

/* ----------------------------------------------------------------------
20
 * This is program IFOS Version 2.0.3
21
 * Inversion of Full Observerd Seismograms
22 23
 *
 *  ----------------------------------------------------------------------*/
Tilman Steinweg's avatar
Tilman Steinweg committed
24 25 26 27 28 29 30 31 32 33


#include "fd.h"           /* general include file for viscoelastic FD programs */

#include "globvar.h"      /* definition of global variables  */
#include "cseife.h"

#include "stfinv/stfinv.h" /* libstfinv - inversion for source time function */

int main(int argc, char **argv){
34
    /* variables in main */
35
    int ns, nseismograms=0, nt, nd, fdo3, j, i, iter, h, infoout, SHOTINC,  hin, hin1, do_stf=0;
36 37 38 39 40 41 42 43 44
    int NTDTINV, nxny, nxnyi, imat, imat1, imat2, IDXI, IDYI, hi, NTST, NTSTI;
    int lsnap, nsnap=0, lsamp=0, buffsize,  swstestshot, snapseis, snapseis1;
    int ntr=0, ntr_loc=0, ntr_glob=0, nsrc=0, nsrc_loc=0, nsrc_glob=0, ishot, irec, nshots=0, nshots1, Lcount, itest, itestshot;
    
    float muss, lamss;
    float memdyn, memmodel, memseismograms, membuffer, memtotal, eps_scale;
    float fac1, fac2;
    float opteps_vp, opteps_vs, opteps_rho, Vp_avg, C_vp, Vs_avg, C_vs, rho_avg, C_rho;
    float memfwt, memfwt1, memfwtdata;
45
    char *buff_addr, ext[10], *fileinp;
46
    char jac[225];
47 48 49 50 51
    
    double time1, time2, time3, time4, time5, time6, time7, time8,
    time_av_v_update=0.0, time_av_s_update=0.0, time_av_v_exchange=0.0,
    time_av_s_exchange=0.0, time_av_timestep=0.0;
    
52
    float L2, L2sum, L2_all_shots, L2sum_all_shots, *L2t, alphanom, alphadenom;
53 54 55
    int sum_killed_traces=0, sum_killed_traces_testshots=0, killed_traces=0, killed_traces_testshots=0;
    int *ptr_killed_traces=&killed_traces, *ptr_killed_traces_testshots=&killed_traces_testshots;
    
56
    float energy, energy_sum, energy_all_shots, energy_sum_all_shots = 0.0;
57 58
    float energy_SH, energy_sum_SH, energy_all_shots_SH, energy_sum_all_shots_SH;
    float L2_SH, L2sum_SH, L2_all_shots_SH, L2sum_all_shots_SH;
59 60
    
    // Pointer for dynamic wavefields:
61
    float  **  psxx, **  psxy, **  psyy, **  psxz, **  psyz, **psp, ** ux, ** uy, ** uxy, ** uyx, ** u, ** Vp0, ** uttx, ** utty, ** Vs0, ** Rho0;
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    float  **  pvx, **  pvy, **  pvz, **waveconv, **waveconv_lam, **waveconv_mu, **waveconv_rho, **waveconv_rho_s, **waveconv_u, **waveconvtmp, **wcpart, **wavejac,**waveconv_rho_s_z,**waveconv_u_z,**waveconv_rho_z;
    float **waveconv_shot, **waveconv_u_shot, **waveconv_rho_shot, **waveconv_u_shot_z, **waveconv_rho_shot_z;
    float  **  pvxp1, **  pvyp1, **  pvzp1, **  pvxm1, **  pvym1, **  pvzm1;
    float ** gradg, ** gradp,** gradg_rho, ** gradp_rho, ** gradg_u, ** gradp_u, ** gradp_u_z,** gradp_rho_z;
    float  **  prho,**  prhonp1, **prip=NULL, **prjp=NULL, **pripnp1=NULL, **prjpnp1=NULL, **  ppi, **  pu, **  punp1, **  puipjp, **  ppinp1;
    float  **  vpmat, ***forward_prop_x, ***forward_prop_y, ***forward_prop_rho_x, ***forward_prop_u, ***forward_prop_rho_y, ***forward_prop_p;
    
    float ***forward_prop_z_xz,***forward_prop_z_yz,***forward_prop_rho_z,**waveconv_mu_z;
    float ** uxz, ** uyz;
    
    float  ** sectionvx=NULL, ** sectionvy=NULL, ** sectionvz=NULL, ** sectionp=NULL, ** sectionpnp1=NULL,
    ** sectioncurl=NULL, ** sectiondiv=NULL, ** sectionvxdata=NULL, ** sectionvydata=NULL, ** sectionvzdata=NULL, ** sectionvxdiff=NULL, ** sectionvzdiff=NULL, ** sectionvxdiffold=NULL, ** sectionvydiffold=NULL, ** sectionvzdiffold=NULL,** sectionpdata=NULL, ** sectionpdiff=NULL, ** sectionpdiffold=NULL,
    ** sectionvydiff=NULL, ** sectionpn=NULL, ** sectionread=NULL, ** sectionvy_conv=NULL, ** sectionvy_obs=NULL, ** sectionvx_conv=NULL,** sectionvx_obs=NULL, ** sectionvz_conv=NULL,** sectionvz_obs=NULL,
    ** sectionp_conv=NULL,** sectionp_obs=NULL, * source_time_function=NULL;
    float  **  absorb_coeff, ** taper_coeff, * epst1, * epst2,  * epst3, * picked_times;
77
    float  ** srcpos=NULL, **srcpos_loc=NULL, ** srcpos1=NULL, **srcpos_loc_back=NULL, ** signals=NULL,** signals_SH=NULL,  *hc=NULL;
78 79 80 81 82 83 84 85 86 87 88 89 90 91
    int   ** recpos=NULL, ** recpos_loc=NULL;
    /*int   ** tracekill=NULL, TRKILL, DTRKILL;*/
    int * DTINV_help;
    
    float ** bufferlef_to_rig,  ** bufferrig_to_lef, ** buffertop_to_bot, ** bufferbot_to_top;
    
    /* PML variables */
    float * d_x, * K_x, * alpha_prime_x, * a_x, * b_x, * d_x_half, * K_x_half, * alpha_prime_x_half, * a_x_half, * b_x_half, * d_y, * K_y, * alpha_prime_y, * a_y, * b_y, * d_y_half, * K_y_half, * alpha_prime_y_half, * a_y_half, * b_y_half;
    float ** psi_sxx_x, ** psi_syy_y, ** psi_sxy_y, ** psi_sxy_x, ** psi_vxx, ** psi_vyy, ** psi_vxy, ** psi_vyx, ** psi_vxxs;
    float ** psi_sxz_x, ** psi_syz_y, ** psi_vzx, ** psi_vzy;
    
    /* Variables for viscoelastic modeling */
    float **ptaus=NULL, **ptaup=NULL, *etaip=NULL, *etajm=NULL, *peta=NULL, **ptausipjp=NULL, **fipjp=NULL, ***dip=NULL, *bip=NULL, *bjm=NULL;
    float *cip=NULL, *cjm=NULL, ***d=NULL, ***e=NULL, ***pr=NULL, ***pp=NULL, ***pq=NULL, **f=NULL, **g=NULL;
92
    float ***pt=NULL, ***po=NULL; // SH Simulation
93 94 95 96 97 98
    
    /* Variables for step length calculation */
    int step1, step2, step3=0, itests, iteste, stepmax, countstep;
    float scalefac;
    
    int RECINC, ntr1;
99 100
    int SOURCE_SHAPE_OLD=0;
    int SOURCE_SHAPE_OLD_SH=0;
101
    
102 103 104
    /* Variables for conjungate gradient */
    int PCG_iter_start=1;
    
105
    /* Variables for L-BFGS */
106
    int LBFGS_NPAR=3;
107
    int LBFGS_iter_start=1;
108
    float **s_LBFGS,**y_LBFGS, *rho_LBFGS;
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    int l=0;
    int m=0;
    
    /* Check wolfe */
    int steplength_search=0;
    int FWI_run=1;
    int gradient_optimization=1;
    float alpha_SL_min=0, alpha_SL_max=0, alpha_SL=1.0;
    float alpha_SL_old;
    float ** waveconv_old,** waveconv_u_old,** waveconv_rho_old;
    float ** waveconv_up,** waveconv_u_up,** waveconv_rho_up;
    float L2_SL_old=0, L2_SL_new=0;
    float c1_SL=1e-4, c2_SL=0.9;
    int wolfe_status;
    int wolfe_sum_FWI=0;
    int wolfe_found_lower_L2=0;
    float alpha_SL_FS;
    float L2_SL_FS;
    int use_wolfe_failsafe=0;
    int wolfe_SLS_failed=0;
    
    /* Variables for energy weighted gradient */
    float ** Ws, **Wr, **We;
    float ** Ws_SH, **Wr_SH, **We_SH;
    float ** We_sum,** We_sum_SH;
    float We_sum_max1;
    float We_max_SH,We_max;
    
    int * recswitch=NULL;
    float ** fulldata=NULL, ** fulldata_vx=NULL, ** fulldata_vy=NULL, ** fulldata_vz=NULL, ** fulldata_p=NULL, ** fulldata_curl=NULL, ** fulldata_div=NULL;
    
    /*vector for abort criterion*/
    float * L2_hist=NULL;
    
    /* help variable for MIN_ITER */
    int min_iter_help=0;
    
    float ** workflow=NULL;
    int workflow_lines;
148
    char workflow_header[STRING_SIZE];
149 150
    int change_wavetype_iter=-10; /* Have to be inialized negative */
    int wavetype_start; /* We need this due to MPI Comm */
151 152
    int buf1=0, buf2=0;
    WORKFLOW_STAGE=1;
153 154
    
    /* variable for time domain filtering */
155 156
    float F_LOW_PASS;
    float *F_LOW_PASS_EXT=NULL;
157 158
    int nfrq=0;
    int FREQ_NR=1;
159

160 161 162
    float JOINT_EQUAL_PSV=0.0, JOINT_EQUAL_SH=0.0;
    float JOINT_EQUAL_PSV_all=0.0, JOINT_EQUAL_SH_all=0.0;
    int JOINT_EQUAL_new_max=1;
163
    
164
    FILE *fprec, *FPL2;
165
    
166 167 168
    FILE *FPL2_JOINT;
    char L2_joint_log[STRING_SIZE];
    
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    /* General parameters */
    int nt_out;
    
    MPI_Request *req_send, *req_rec;
    MPI_Status  *send_statuses, *rec_statuses;
    
    /* Initialize MPI environment */
    MPI_Init(&argc,&argv);
    MPI_Comm_size(MPI_COMM_WORLD,&NP);
    MPI_Comm_rank(MPI_COMM_WORLD,&MYID);
    
    setvbuf(stdout, NULL, _IONBF, 0);
    
    if (MYID == 0){
        time1=MPI_Wtime();
        clock();
    }
    
    /* print program name, version etc to stdout*/
    if (MYID == 0) info(stdout);
    
    /* read parameters from parameter-file (stdin) */
    fileinp=argv[1];
    FP=fopen(fileinp,"r");
    if(FP==NULL) {
        if (MYID == 0){
            printf("\n==================================================================\n");
Florian Wittkamp's avatar
Florian Wittkamp committed
196
            printf(" Cannot open IFOS input file %s \n",fileinp);
197
            printf("\n==================================================================\n\n");
198
            declare_error(" --- ");
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        }
    }
    
    /* read json formatted input file */
    read_par_json(stdout,fileinp);
    
    exchange_par();
    
    wavetype_start=WAVETYPE;
    if (MYID == 0) note(stdout);
    
    
    /* open log-file (each PE is using different file) */
    /*	fp=stdout; */
    sprintf(ext,".%i",MYID);
    strcat(LOG_FILE,ext);
    
    /* If Verbose==0, no PE will write a log file */
    if(!VERBOSE) sprintf(LOG_FILE,"/dev/null");
    
Florian Wittkamp's avatar
Florian Wittkamp committed
219
    if ((MYID==0)) FP=stdout;
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    else {
        FP=fopen(LOG_FILE,"w");
    }
    fprintf(FP," This is the log-file generated by PE %d \n\n",MYID);
    
    /* domain decomposition */
    initproc();
    
    NT=iround(TIME/DT);  	  /* number of timesteps */
    /*ns=iround(NT/NDT);*/           /* number of samples per trace */
    ns=NT;	/* in a FWI one has to keep all samples of the forward modeled data
             at the receiver positions to calculate the adjoint sources and to do
             the backpropagation; look at function saveseis_glob.c to see that every
             NDT sample for the forward modeled wavefield is written to su files*/
    
    /* output of parameters to log-file or stdout */
    if (MYID==0) write_par(FP);
    
    
    /* NXG, NYG denote size of the entire (global) grid */
    NXG=NX;
    NYG=NY;
    
    /* In the following, NX and NY denote size of the local grid ! */
    NX = IENDX;
    NY = IENDY;
246 247 248 249 250
        
    /* Reading source positions from SOURCE_FILE */
    srcpos=sources(&nsrc);
    nsrc_glob=nsrc;
    ishot=0;    
251 252
    
    if (SEISMO){
253
        recpos=receiver(&ntr, srcpos, ishot);
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        recswitch = ivector(1,ntr);
        recpos_loc = splitrec(recpos,&ntr_loc, ntr, recswitch);
        ntr_glob=ntr;
        ntr=ntr_loc;
    }
    
    /* memory allocation for abort criterion*/
    L2_hist = vector(1,1000);
    
    if(INV_STF) fulldata = matrix(1,ntr_glob,1,NT);
    
    /* estimate memory requirement of the variables in megabytes*/
    
    switch (SEISMO){
        case 1 : /* particle velocities only */
            nseismograms=2;
            break;
        case 2 : /* pressure only */
            nseismograms=1;
            break;
        case 3 : /* curl and div only */
            nseismograms=2;
            break;
        case 4 : /* everything */
            nseismograms=5;
            break;
        case 5 : /* everything except curl and div */
            nseismograms=3;
            break;
    }
    
    /* use only every DTINV time sample for the inversion */
    /*DTINV=15;*/
    DTINV_help=ivector(1,NT);
    NTDTINV=ceil((float)NT/(float)DTINV);		/* round towards next higher integer value */
    
    /* save every IDXI and IDYI spatial point during the forward modelling */
    IDXI=1;
    IDYI=1;
    
    /*allocate memory for dynamic, static and buffer arrays */
    fac1=(NX+FDORDER)*(NY+FDORDER);
    fac2=sizeof(float)*pow(2.0,-20.0);
    
    nd = FDORDER/2 + 1;
    
    // decide how much space for exchange is needed
    switch (WAVETYPE) {
        case 1:
            fdo3 = 2*nd;
            break;
        case 2:
            fdo3 = 1*nd;
            break;
        case 3:
            fdo3 = 3*nd;
            break;
        default:
            fdo3 = 2*nd;
            break;
    }
    
    
    if (L){
        memdyn=(5.0+3.0*(float)L)*fac1*fac2;
        memmodel=(12.0+3.0*(float)L)*fac1*fac2;
        
    } else {
        memdyn=5.0*fac1*fac2;
        memmodel=6.0*fac1*fac2;
    }
    memseismograms=nseismograms*ntr*ns*fac2;
    
    memfwt=5.0*((NX/IDXI)+FDORDER)*((NY/IDYI)+FDORDER)*NTDTINV*fac2;
    memfwt1=20.0*NX*NY*fac2;
    memfwtdata=6.0*ntr*ns*fac2;
    
    membuffer=2.0*fdo3*(NY+NX)*fac2;
    buffsize=2.0*2.0*fdo3*(NX+NY)*sizeof(MPI_FLOAT);
    memtotal=memdyn+memmodel+memseismograms+memfwt+memfwt1+memfwtdata+membuffer+(buffsize*pow(2.0,-20.0));
    
    
    if (MYID==0 && WAVETYPE == 1){
        fprintf(FP,"\n **Message from main (printed by PE %d):\n",MYID);
        fprintf(FP," Size of local grids: NX=%d \t NY=%d\n",NX,NY);
        fprintf(FP," Each process is now trying to allocate memory for:\n");
        fprintf(FP," Dynamic variables: \t\t %6.2f MB\n", memdyn);
        fprintf(FP," Static variables: \t\t %6.2f MB\n", memmodel);
        fprintf(FP," Seismograms: \t\t\t %6.2f MB\n", memseismograms);
        fprintf(FP," Buffer arrays for grid exchange:%6.2f MB\n", membuffer);
        fprintf(FP," Network Buffer for MPI_Bsend: \t %6.2f MB\n", buffsize*pow(2.0,-20.0));
        fprintf(FP," ------------------------------------------------ \n");
        fprintf(FP," Total memory required: \t %6.2f MB.\n\n", memtotal);
    }
    
    
    /* allocate buffer for buffering messages */
    buff_addr=malloc(buffsize);
352
    if (!buff_addr) declare_error("allocation failure for buffer for MPI_Bsend !");
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    MPI_Buffer_attach(buff_addr,buffsize);
    
    /* allocation for request and status arrays */
    req_send=(MPI_Request *)malloc(REQUEST_COUNT*sizeof(MPI_Request));
    req_rec=(MPI_Request *)malloc(REQUEST_COUNT*sizeof(MPI_Request));
    send_statuses=(MPI_Status *)malloc(REQUEST_COUNT*sizeof(MPI_Status));
    rec_statuses=(MPI_Status *)malloc(REQUEST_COUNT*sizeof(MPI_Status));
    
    
    /* memory allocation for dynamic (wavefield) arrays */
    if(!ACOUSTIC){
        switch (WAVETYPE) {
            case 1: // P and SV Waves
                psxx =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psxy =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psyy =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                break;
                
            case 2: // SH Waves
                psxz =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psyz =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                break;
                
            case 3: // P, SH and SV Waves
                psxx =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psxy =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psyy =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psxz =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                psyz =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
                break;
        }
    }else{
        psp  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    }
    
    if(GRAD_METHOD==2) {
389
        /* Allocate memory for L-BFGS */
390
        
391
        if(WAVETYPE==2) LBFGS_NPAR=2;
392
        
393
        s_LBFGS=fmatrix(1,N_LBFGS,1,LBFGS_NPAR*NX*NY);
394
        
395
        y_LBFGS=fmatrix(1,N_LBFGS,1,LBFGS_NPAR*NX*NY);
396
        
397
        rho_LBFGS=vector(1,N_LBFGS);
398
        
399 400 401 402
        for(l=1;l<=N_LBFGS;l++){
            for(m=1;m<=LBFGS_NPAR*NX*NY;m++){
                s_LBFGS[l][m]=0.0;
                y_LBFGS[l][m]=0.0;
403
            }
404
            rho_LBFGS[l]=0.0;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
        }
    }
    
    if(!ACOUSTIC){
        if(WAVETYPE==1||WAVETYPE==3){
            ux   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            uy   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            uxy  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            uyx  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            uttx   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            utty   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        }
        if(WAVETYPE==2||WAVETYPE==3){
            uxz   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            uyz   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        }
421 422
    }else{
        u = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    }
    
    switch (WAVETYPE) {
        case 1: // P and SV Waves
            pvx  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvy  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvxp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvyp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvxm1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvym1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            break;
            
        case 2: // SH Waves
            pvz  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvzp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvzm1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            break;
            
        case 3: // P and SV Waves
            pvx  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvy  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvxp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvyp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvxm1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvym1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvz  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvzp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            pvzm1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            break;
    }
    
    Vp0  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    if(!ACOUSTIC)
        Vs0  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    Rho0  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    
    /* memory allocation for static (model) arrays */
    prho =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    prhonp1 =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    prip =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    prjp =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    pripnp1 =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    prjpnp1 =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    ppi  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    ppinp1  =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    if(!ACOUSTIC){
        pu   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        punp1   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        puipjp   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    }
    vpmat   =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
    
    
    if((EPRECOND==1)||(EPRECOND==3)){
        if(WAVETYPE==1 || WAVETYPE==3) {
            We_sum = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            Ws = matrix(-nd+1,NY+nd,-nd+1,NX+nd); /* total energy of the source wavefield */
            Wr = matrix(-nd+1,NY+nd,-nd+1,NX+nd); /* total energy of the receiver wavefield */
            We = matrix(-nd+1,NY+nd,-nd+1,NX+nd); /* total energy of source and receiver wavefield */
        }
        if(WAVETYPE==2 || WAVETYPE==3) {
            We_sum_SH = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            Ws_SH = matrix(-nd+1,NY+nd,-nd+1,NX+nd); /* total energy of the source wavefield */
            Wr_SH = matrix(-nd+1,NY+nd,-nd+1,NX+nd); /* total energy of the receiver wavefield */
            We_SH = matrix(-nd+1,NY+nd,-nd+1,NX+nd); /* total energy of source and receiver wavefield */
        }
    }
    
    if (L) {
        /* dynamic (wavefield) arrays for viscoelastic modeling */
        pr = f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        pp = f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        pq = f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        /* memory allocation for static arrays for viscoelastic modeling */
        dip = f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        d =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        e =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        ptaus =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        ptausipjp =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        if(WAVETYPE==2 || WAVETYPE==3) {
            pt = f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
            po = f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,L);
        }
        ptaup =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        fipjp =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        f =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        g =  matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        peta =  vector(1,L);
        etaip =  vector(1,L);
        etajm =  vector(1,L);
        bip =  vector(1,L);
        bjm =  vector(1,L);
        cip =  vector(1,L);
        cjm =  vector(1,L);
    }
    
    NTST=20;
    nxnyi=(NX/IDXI)*(NY/IDYI);
    
    /* Parameters for step length calculations */
    stepmax = STEPMAX; /* number of maximum misfit calculations/steplength 2/3*/
    scalefac = SCALEFAC; /* scale factor for the step length */
    
526
    if(FORWARD_ONLY==0){
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
        waveconv = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        waveconv_lam = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        waveconv_shot = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        
        waveconvtmp = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        wcpart = matrix(1,3,1,3);
        wavejac = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        
        if(!ACOUSTIC){
            forward_prop_x =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
            forward_prop_y =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
        }else{
            forward_prop_p =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
        }
        gradg = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        gradp = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        
        if(WAVETYPE==1 || WAVETYPE==3){
            forward_prop_rho_x =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
            forward_prop_rho_y =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
        }
        if(WAVETYPE==2 || WAVETYPE==3){
            forward_prop_rho_z =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
            forward_prop_z_xz =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
            forward_prop_z_yz =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
            waveconv_rho_shot_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_u_shot_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_mu_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_rho_s_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_u_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_rho_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            gradp_u_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            gradp_rho_z = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        }
        
        gradg_rho = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        gradp_rho = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        waveconv_rho = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        waveconv_rho_s = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        waveconv_rho_shot = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        
        if(WOLFE_CONDITION){
569 570 571 572
            
            c1_SL=WOLFE_C1_SL;
            c2_SL=WOLFE_C2_SL;
            
573
            waveconv_old= matrix(-nd+1,NY+nd,-nd+1,NX+nd);
574
            if(!ACOUSTIC) waveconv_u_old= matrix(-nd+1,NY+nd,-nd+1,NX+nd);
575 576 577
            waveconv_rho_old= matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            
            waveconv_up= matrix(-nd+1,NY+nd,-nd+1,NX+nd);
578
            if(!ACOUSTIC) waveconv_u_up= matrix(-nd+1,NY+nd,-nd+1,NX+nd);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
            waveconv_rho_up= matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        }
        
        if(!ACOUSTIC){
            forward_prop_u =  f3tensor(-nd+1,NY+nd,-nd+1,NX+nd,1,NT/DTINV);
            gradg_u = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            gradp_u = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_u = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_mu = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
            waveconv_u_shot = matrix(-nd+1,NY+nd,-nd+1,NX+nd);
        }
        
    }
    
    /* Allocate memory for boundary */
    if(FW>0){
        d_x = vector(1,2*FW);
        K_x = vector(1,2*FW);
        alpha_prime_x = vector(1,2*FW);
        a_x = vector(1,2*FW);
        b_x = vector(1,2*FW);
        
        d_x_half = vector(1,2*FW);
        K_x_half = vector(1,2*FW);
        alpha_prime_x_half = vector(1,2*FW);
        a_x_half = vector(1,2*FW);
        b_x_half = vector(1,2*FW);
        
        d_y = vector(1,2*FW);
        K_y = vector(1,2*FW);
        alpha_prime_y = vector(1,2*FW);
        a_y = vector(1,2*FW);
        b_y = vector(1,2*FW);
        
        d_y_half = vector(1,2*FW);
        K_y_half = vector(1,2*FW);
        alpha_prime_y_half = vector(1,2*FW);
        a_y_half = vector(1,2*FW);
        b_y_half = vector(1,2*FW);
        
        if (WAVETYPE==1||WAVETYPE==3){
            psi_sxx_x =  matrix(1,NY,1,2*FW);
            psi_syy_y =  matrix(1,2*FW,1,NX);
            psi_sxy_y =  matrix(1,2*FW,1,NX);
            psi_sxy_x =  matrix(1,NY,1,2*FW);
            psi_vxx   =  matrix(1,NY,1,2*FW);
            psi_vxxs  =  matrix(1,NY,1,2*FW);
            psi_vyy   =  matrix(1,2*FW,1,NX);
            psi_vxy   =  matrix(1,2*FW,1,NX);
            psi_vyx   =  matrix(1,NY,1,2*FW);
        }
        if(WAVETYPE==2||WAVETYPE == 3 ){
            psi_sxz_x =  matrix(1,NY,1,2*FW);
            psi_syz_y =  matrix(1,2*FW,1,NX);
            psi_vzx   =  matrix(1,NY,1,2*FW);
            psi_vzy   =  matrix(1,2*FW,1,NX);
        }
    }
    
    taper_coeff=  matrix(1,NY,1,NX);
    
    
    /* memory allocation for buffer arrays in which the wavefield
     information which is exchanged between neighbouring PEs is stored */
    bufferlef_to_rig = matrix(1,NY,1,fdo3);
    bufferrig_to_lef = matrix(1,NY,1,fdo3);
    buffertop_to_bot = matrix(1,NX,1,fdo3);
    bufferbot_to_top = matrix(1,NX,1,fdo3);
    
    /* Allocate memory to save full seismograms */
    switch (SEISMO){
        case 1 : /* particle velocities only */
            switch (WAVETYPE) {
                case 1:
                    fulldata_vx = matrix(1,ntr_glob,1,NT);
                    fulldata_vy = matrix(1,ntr_glob,1,NT);
                    break;
                    
                case 2:
                    fulldata_vz = matrix(1,ntr_glob,1,NT);
                    break;
                    
                case 3:
                    fulldata_vx = matrix(1,ntr_glob,1,NT);
                    fulldata_vy = matrix(1,ntr_glob,1,NT);
                    fulldata_vz = matrix(1,ntr_glob,1,NT);
                    break;
            }
            break;
        case 2 : /* pressure only */
            fulldata_p = matrix(1,ntr_glob,1,NT);
            break;
        case 3 : /* curl and div only */
            fulldata_div = matrix(1,ntr_glob,1,NT);
            fulldata_curl = matrix(1,ntr_glob,1,NT);
            break;
        case 4 : /* everything */
            switch (WAVETYPE) {
                case 1:
                    fulldata_vx = matrix(1,ntr_glob,1,NT);
                    fulldata_vy = matrix(1,ntr_glob,1,NT);
                    break;
                    
                case 2:
                    fulldata_vz = matrix(1,ntr_glob,1,NT);
                    break;
                    
                case 3:
                    fulldata_vx = matrix(1,ntr_glob,1,NT);
                    fulldata_vy = matrix(1,ntr_glob,1,NT);
                    fulldata_vz = matrix(1,ntr_glob,1,NT);
                    break;
            }
            fulldata_p = matrix(1,ntr_glob,1,NT);
            fulldata_div = matrix(1,ntr_glob,1,NT);
            fulldata_curl = matrix(1,ntr_glob,1,NT);
            break;
        case 5 : /* everything except curl and div*/
            switch (WAVETYPE) {
                case 1:
                    fulldata_vx = matrix(1,ntr_glob,1,NT);
                    fulldata_vy = matrix(1,ntr_glob,1,NT);
                    break;
                    
                case 2:
                    fulldata_vz = matrix(1,ntr_glob,1,NT);
                    break;
                    
                case 3:
                    fulldata_vx = matrix(1,ntr_glob,1,NT);
                    fulldata_vy = matrix(1,ntr_glob,1,NT);
                    fulldata_vz = matrix(1,ntr_glob,1,NT);
                    break;
            }
            fulldata_p = matrix(1,ntr_glob,1,NT);
            break;
            
    }
    if (ntr>0){
718 719 720
      alloc_sections(ntr,ns,&sectionvx,&sectionvy,&sectionvz,&sectionp,&sectionpnp1,&sectionpn,&sectioncurl,&sectiondiv,
	&sectionpdata,&sectionpdiff,&sectionpdiffold,&sectionvxdata,&sectionvxdiff,&sectionvxdiffold,&sectionvydata,
	&sectionvydiff,&sectionvydiffold,&sectionvzdata,&sectionvzdiff,&sectionvzdiffold);
721 722 723 724
    }
    
    /* Memory for seismic data */
    sectionread=matrix(1,ntr_glob,1,ns);
725
        
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
    /* Memory for inversion for source time function */
    if((INV_STF==1)||(TIME_FILT==1) || (TIME_FILT==2)){
        sectionp_conv=matrix(1,ntr_glob,1,NT);
        sectionp_obs=matrix(1,ntr_glob,1,NT);
        source_time_function = vector(1,NT);
        switch (WAVETYPE) {
            case 1:
                sectionvy_conv=matrix(1,ntr_glob,1,NT);
                sectionvy_obs=matrix(1,ntr_glob,1,NT);
                sectionvx_conv=matrix(1,ntr_glob,1,NT);
                sectionvx_obs=matrix(1,ntr_glob,1,NT);
                break;
                
            case 2:
                sectionvz_conv=matrix(1,ntr_glob,1,NT);
                sectionvz_obs=matrix(1,ntr_glob,1,NT);
                break;
                
            case 3:
                sectionvy_conv=matrix(1,ntr_glob,1,NT);
                sectionvy_obs=matrix(1,ntr_glob,1,NT);
                sectionvx_conv=matrix(1,ntr_glob,1,NT);
                sectionvx_obs=matrix(1,ntr_glob,1,NT);
                sectionvz_conv=matrix(1,ntr_glob,1,NT);
                sectionvz_obs=matrix(1,ntr_glob,1,NT);
                break;
        }
    }
    
    /* memory for source position definition */
    srcpos1=fmatrix(1,8,1,1);
    
    /* memory of L2 norm */
    L2t = vector(1,4);
    epst1 = vector(1,3);
    epst2 = vector(1,3);
    epst3 = vector(1,3);
    picked_times = vector(1,ntr);
    
    fprintf(FP," ... memory allocation for PE %d was successfull.\n\n", MYID);
    
    
    /* Holberg coefficients for FD operators*/
    hc = holbergcoeff();
    
    MPI_Barrier(MPI_COMM_WORLD);
    
773
    if(FORWARD_ONLY==0&&USE_WORKFLOW){
774
        read_workflow(FILE_WORKFLOW,&workflow, &workflow_lines,workflow_header);
775 776 777
    }
    
    /* create model grids */
Florian Wittkamp's avatar
Florian Wittkamp committed
778
    if(L){
779
        if(!ACOUSTIC){
Florian Wittkamp's avatar
Florian Wittkamp committed
780 781 782 783
            if (READMOD){
                readmod(prho,ppi,pu,ptaus,ptaup,peta);
            }else{
                model(prho,ppi,pu,ptaus,ptaup,peta);
784 785
            }
        }else{
Florian Wittkamp's avatar
Florian Wittkamp committed
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
            if (READMOD){
                readmod_viscac(prho,ppi,ptaup,peta);
            }else{
                model_viscac(prho,ppi,ptaup,peta);
            }
        }
    }else{
        if(!ACOUSTIC){
            if (READMOD){
                readmod_elastic(prho,ppi,pu);
            }else{
                model_elastic(prho,ppi,pu);
            }
        }else{
            if (READMOD){
                readmod_acoustic(prho,ppi);
            }else{
                model_acoustic(prho,ppi);
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
            }
        }
    }
    
    /* check if the FD run will be stable and free of numerical dispersion */
    checkfd(FP, prho, ppi, pu, ptaus, ptaup, peta, hc, srcpos, nsrc, recpos, ntr_glob);
    
    /* calculate damping coefficients for CPMLs*/
    if(FW>0)
        PML_pro(d_x, K_x, alpha_prime_x, a_x, b_x, d_x_half, K_x_half, alpha_prime_x_half, a_x_half, b_x_half, d_y, K_y, alpha_prime_y, a_y, b_y, d_y_half, K_y_half, alpha_prime_y_half, a_y_half, b_y_half);
    
    MPI_Barrier(MPI_COMM_WORLD);
    
    SHOTINC=1;
    RECINC=1;
    
    switch(TIME_FILT){
821
        case 1: F_LOW_PASS=F_LOW_PASS_START; break;
822
            /*read frequencies from file*/
823
        case 2: F_LOW_PASS_EXT=filter_frequencies(&nfrq); F_LOW_PASS=F_LOW_PASS_EXT[FREQ_NR]; break;
824 825
    }
    
826
    /* Save old SOURCE_SHAPE, which is needed for STF */
827
    SOURCE_SHAPE_OLD = SOURCE_SHAPE;
828
    if(WAVETYPE==2 || WAVETYPE==3) SOURCE_SHAPE_OLD_SH=SOURCE_SHAPE_SH;
829 830 831 832 833 834 835 836 837 838
    
    nt_out=10000;
    if(!VERBOSE) nt_out=1e5;
    /*------------------------------------------------------------------------------*/
    /*----------- start fullwaveform iteration loop --------------------------------*/
    /*------------------------------------------------------------------------------*/
    
    for(iter=1;iter<=ITERMAX;iter++){  /* fullwaveform iteration loop */
        
        // At each iteration the workflow is applied
839
        if(USE_WORKFLOW&&(FORWARD_ONLY==0)){
840
            
841
            apply_workflow(workflow,workflow_lines,workflow_header,&iter,&F_LOW_PASS,wavetype_start,&change_wavetype_iter,&LBFGS_iter_start);
842 843 844
            
        }
        
845
        if(GRAD_METHOD==2&&(FORWARD_ONLY==0)){
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
            
            /* detect a change in inversion process and restart L-BFGS */
            if(iter==INV_RHO_ITER||iter==INV_VP_ITER||iter==INV_VS_ITER){
                LBFGS_iter_start=iter;
                
                if(WOLFE_CONDITION) {
                    /* Restart Step Length search */
                    alpha_SL_old=1;
                }
                
                /* set values */
                FWI_run=1;
                gradient_optimization=1;
            }
            
            /* restart L-BFGS */
            if(iter==LBFGS_iter_start) {
863
                lbfgs_reset(iter,N_LBFGS,LBFGS_NPAR,s_LBFGS,y_LBFGS,rho_LBFGS);
864 865 866 867 868 869
                
                /* set values */
                FWI_run=1;
                gradient_optimization=1;
            }
            
870 871
            /* Reset fail status of parabolic step length search */
            step3=0;
872 873 874 875 876
        }
        
        if (MYID==0){
            time2=MPI_Wtime();
            fprintf(FP,"\n\n\n ------------------------------------------------------------------\n");
877
            if(FORWARD_ONLY==0) {
878 879 880 881
                fprintf(FP,"\n\n\n                   TDFWI ITERATION %d \t of %d \n",iter,ITERMAX);
            } else {
                fprintf(FP,"\n\n\n                        FD-SIMULATION \n");
            }
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
            fprintf(FP,"\n\n\n ------------------------------------------------------------------\n");
        }
        
        countstep=0;
        
        if(GRAD_METHOD==1) {FWI_run=1; steplength_search=0; gradient_optimization=1;}
        
        /*-----------------------------------------------------*/
        /*  While loop for Wolfe step length search            */
        /*-----------------------------------------------------*/
        while(FWI_run || steplength_search || gradient_optimization) {
            
            /*-----------------------------------------------------*/
            /*              Calculate Misfit and gradient          */
            /*-----------------------------------------------------*/
            if(FWI_run){
                /* For the calculation of the material parameters between gridpoints
                 they have to be averaged. For this, values lying at 0 and NX+1,
                 for example, are required on the local grid. These are now copied from the
                 neighbouring grids */
Florian Wittkamp's avatar
Florian Wittkamp committed
902 903 904 905 906 907
                if (L){
                    if(!ACOUSTIC){
                        matcopy(prho,ppi,pu,ptaus,ptaup);
                    } else {
                        matcopy_viscac(prho,ppi,ptaup);
                    }
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
                }else{
                    if(!ACOUSTIC){
                        matcopy_elastic(prho, ppi, pu);
                    }else{
                        matcopy_acoustic(prho, ppi);
                    }
                }
                
                MPI_Barrier(MPI_COMM_WORLD);
                
                /* MPI split for processors with ntr>0 */
                int myid_ntr, group_id=0, groupsize;
                MPI_Comm	MPI_COMM_NTR;
                
                if (ntr) group_id = 1;
                else group_id = 0;
                MPI_Comm_split(MPI_COMM_WORLD, group_id, MYID, &MPI_COMM_NTR);
                MPI_Comm_rank(MPI_COMM_NTR, &myid_ntr);
                /* end of MPI split for processors with ntr>0 */
                
                
929
                if(!ACOUSTIC) av_mue(pu,puipjp,prho);
930
                av_rho(prho,prip,prjp);
931
                if (!ACOUSTIC && L) av_tau(ptaus,ptausipjp);
932 933 934
                
                
                /* Preparing memory variables for update_s (viscoelastic) */
Florian Wittkamp's avatar
Florian Wittkamp committed
935 936 937 938 939 940 941
                if (L) {
                    if(!ACOUSTIC){
                        prepare_update_s(etajm,etaip,peta,fipjp,pu,puipjp,ppi,prho,ptaus,ptaup,ptausipjp,f,g,bip,bjm,cip,cjm,dip,d,e);
                    } else {
                        prepare_update_p(etajm,peta,ppi,prho,ptaup,g,bjm,cjm,e);
                    }
                }
942
                
943
                /* Do some initia calculations */
944 945
                if(iter==1){
                    
946
                    /* Calculationg material parameters according to PARAMETERIZATION */
947 948
                    for (j=1;j<=NY;j=j+IDY){
                        for (i=1;i<=NX;i=i+IDX){
949
                            
950
                            if(PARAMETERIZATION==1){
951 952 953 954 955 956 957
                                
                                Vp0[j][i] = ppi[j][i];
                                if(!ACOUSTIC) Vs0[j][i] = pu[j][i];
                                Rho0[j][i] = prho[j][i];}
                            
                            
                            
958
                            if(PARAMETERIZATION==2){
959 960 961 962 963 964 965
                                
                                Vp0[j][i] = sqrt((ppi[j][i]+2.0*pu[j][i])*prho[j][i]);
                                Vs0[j][i] = sqrt((pu[j][i])*prho[j][i]);
                                Rho0[j][i] = prho[j][i];
                                
                            }
                            
966
                            if(PARAMETERIZATION==3){
967 968 969 970 971 972 973 974 975 976
                                
                                Vp0[j][i] = ppi[j][i];
                                Vs0[j][i] = pu[j][i];
                                Rho0[j][i] = prho[j][i];
                                
                            }
                            
                        }
                    }
                    
977 978 979 980 981
                    /* Get average values from material parameters */
                    Vp_avg=average_matrix(ppi);
                    rho_avg=average_matrix(prho);
                    if(!ACOUSTIC) Vs_avg=average_matrix(pu);
        
982 983
                    if(!ACOUSTIC) if(VERBOSE) printf("MYID = %d \t Vp_avg = %e \t Vs_avg = %e \t rho_avg = %e \n ",MYID,Vp_avg,Vs_avg,rho_avg);
                    else if(VERBOSE) printf("MYID = %d \t Vp_avg = %e \t rho_avg = %e \n ",MYID,Vp_avg,rho_avg);
984

985 986 987 988 989
                    C_vp = Vp_avg*Vp_avg;
                    if(!ACOUSTIC) C_vs = Vs_avg*Vs_avg;
                    C_rho = rho_avg*rho_avg;
                }
                
990 991 992 993 994 995
                
                /* Seperate PSV and SH logging in case of a joint inversion */
                if(WAVETYPE==3){
                    sprintf(L2_joint_log,"%s_JOINT",MISFIT_LOG_FILE);
                }
                
996
                /* Open Log File for L2 norm */
Florian Wittkamp's avatar
Florian Wittkamp committed
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
                if(!FORWARD_ONLY && MYID==0){
                    
                    if(iter==1){
                        
                        FPL2=fopen(MISFIT_LOG_FILE,"w");
                        
                        /* Write header for misfit log file */
                        if(GRAD_METHOD==1&&VERBOSE) {
                            if (TIME_FILT==0){
                                fprintf(FPL2,"opteps_vp \t epst1[1] \t epst1[2] \t epst1[3] \t L2t[1] \t L2t[2] \t L2t[3] \t L2t[4] \n");}
                            else{
                                fprintf(FPL2,"opteps_vp \t epst1[1] \t epst1[2] \t epst1[3] \t L2t[1] \t L2t[2] \t L2t[3] \t L2t[4] \t F_LOW_PASS \n");
1009
                            }
Florian Wittkamp's avatar
Florian Wittkamp committed
1010
                        }
Florian Wittkamp's avatar
Florian Wittkamp committed
1011 1012 1013 1014 1015 1016 1017 1018 1019
                        
                        if(WAVETYPE==3) FPL2_JOINT=fopen(L2_joint_log,"w");
                        
                    } else {
                        
                        FPL2=fopen(MISFIT_LOG_FILE,"a");
                        
                        if(WAVETYPE==3) FPL2_JOINT=fopen(L2_joint_log,"a");
                        
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
                    }
                }
                
                /* initialization of L2 calculation */
                L2=0.0;
                energy=0.0;
                L2_all_shots=0.0;
                energy_all_shots=0.0;
                killed_traces=0;
                killed_traces_testshots=0;
                
1031 1032 1033 1034 1035 1036
                if(WAVETYPE==2||WAVETYPE==3){
                    L2_SH=0.0;
                    energy_SH=0.0;
                    L2_all_shots_SH=0.0;
                    energy_all_shots_SH=0.0;
                }
1037 1038 1039 1040 1041 1042
                
                EPSILON=0.0;  /* test step length */
                exchange_par();
                
                /* initialize waveconv matrix*/
                if(WAVETYPE==1||WAVETYPE==3){
1043
                    if(FORWARD_ONLY==0){
1044
                        for (j=1;j<=NY;j=j+IDY){
1045
                            for (i=1;i<=NX;i=i+IDX){
1046
                                waveconv[j][i]=0.0;
1047
                                waveconv_rho[j][i]=0.0;
1048
                                if(!ACOUSTIC) waveconv_u[j][i]=0.0;
1049 1050 1051 1052 1053 1054
                            }
                        }
                    }
                }
                /* initialize waveconv matrix*/
                if(WAVETYPE==2||WAVETYPE==3){
1055
                    if(FORWARD_ONLY==0){
1056 1057
                        for (j=1;j<=NY;j=j+IDY){
                            for (i=1;i<=NX;i=i+IDX){
1058 1059 1060 1061 1062 1063 1064 1065 1066
                                waveconv_rho_z[j][i]=0.0;
                                waveconv_u_z[j][i]=0.0;
                                
                            }
                        }
                    }
                }
                
                if((EPRECOND>0)&&(EPRECOND_ITER==iter||(EPRECOND_ITER==0))){
1067 1068
                    for (j=1;j<=NY;j=j+IDY){
                        for (i=1;i<=NX;i=i+IDX){
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
                            if(WAVETYPE==1||WAVETYPE==3) We_sum[j][i]=0.0;
                            if(WAVETYPE==2||WAVETYPE==3) We_sum_SH[j][i]=0.0;
                        }
                    }
                }
                
                
                
                itestshot=TESTSHOT_START;
                swstestshot=0;
                
                if(INVTYPE==2){
                    if (RUN_MULTIPLE_SHOTS) nshots=nsrc; else nshots=1;
                    
                    /*------------------------------------------------------------------------------*/
                    /*----------- Start of loop over shots -----------------------------------------*/
                    /*------------------------------------------------------------------------------*/
                    
                    for (ishot=1;ishot<=nshots;ishot+=SHOTINC){
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
     
       			if (SEISMO && READREC==2){
			  if (ntr>0) {
			    dealloc_sections(ntr,ns,recpos_loc,sectionvx,sectionvy,sectionvz,sectionp,sectionpnp1,sectionpn,sectioncurl,sectiondiv,
					     sectionpdata,sectionpdiff,sectionpdiffold,sectionvxdata,sectionvxdiff,sectionvxdiffold,sectionvydata,
					     sectionvydiff,sectionvydiffold,sectionvzdata,sectionvzdiff,sectionvzdiffold);
			  }
			  free_imatrix(recpos,1,3,1,ntr_glob);
			  recpos=receiver(&ntr, srcpos, ishot);
			  recpos_loc = splitrec(recpos,&ntr_loc, ntr, recswitch);
			  ntr_glob=ntr;
			  ntr=ntr_loc;
			  if (ntr>0){
				alloc_sections(ntr,ns,&sectionvx,&sectionvy,&sectionvz,&sectionp,&sectionpnp1,&sectionpn,&sectioncurl,&sectiondiv,
					      &sectionpdata,&sectionpdiff,&sectionpdiffold,&sectionvxdata,&sectionvxdiff,&sectionvxdiffold,&sectionvydata,
					      &sectionvydiff,&sectionvydiffold,&sectionvzdata,&sectionvzdiff,&sectionvzdiffold);
			  }
			  if (ntr) group_id = 1;
			  else group_id = 0;
			  MPI_Comm_split(MPI_COMM_WORLD, group_id, MYID, &MPI_COMM_NTR);
			  MPI_Comm_rank(MPI_COMM_NTR, &myid_ntr);
			}
1110

1111
                        SOURCE_SHAPE = SOURCE_SHAPE_OLD;
1112 1113
                        if(WAVETYPE==2 || WAVETYPE==3) SOURCE_SHAPE_SH=SOURCE_SHAPE_OLD_SH;
                        
1114 1115 1116 1117
                        /*------------------------------------------------------------------------------*/
                        /*----------- Start of inversion of source time function -----------------------*/
                        /*------------------------------------------------------------------------------*/
                        
1118 1119 1120 1121
                        /* Do not Excute STF if this is a step length search run for Wolfe condition
                         * Therefore (gradient_optimization==1) is added.
                         */
                        
1122
                        if(((INV_STF==1)&&( (iter==1) || (do_stf==1) )) && (gradient_optimization==1) ){
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
                            fprintf(FP,"\n==================================================================================\n");
                            fprintf(FP,"\n MYID=%d *****  Forward simulation for inversion of source time function ******** \n",MYID);
                            fprintf(FP,"\n MYID=%d * Starting simulation (forward model) for shot %d of %d. Iteration %d ** \n",MYID,ishot,nshots,iter);
                            fprintf(FP,"\n==================================================================================\n\n");
                            
                            for (nt=1;nt<=8;nt++) srcpos1[nt][1]=srcpos[nt][ishot];
                            
                            if (RUN_MULTIPLE_SHOTS){
                                /* find this single source positions on subdomains */
                                if (nsrc_loc>0) free_matrix(srcpos_loc,1,8,1,1);
                                srcpos_loc=splitsrc(srcpos1,&nsrc_loc, 1);
                            }else{
                                /* Distribute multiple source positions on subdomains */
                                srcpos_loc = splitsrc(srcpos,&nsrc_loc, nsrc);
                            }
                            
1139
                            if(SOURCE_SHAPE==3) declare_error("SOURCE_SHAPE==3 isn't possible with INV_STF==1");
1140
                            MPI_Barrier(MPI_COMM_WORLD);
1141 1142 1143 1144 1145 1146 1147 1148
                            
                            
                            /*-------------------*/
                            /* calculate wavelet */
                            /*-------------------*/
                            /* calculate wavelet for each source point P SV */
                            if(WAVETYPE==1||WAVETYPE==3){
                                signals=NULL;
1149
                                signals=wavelet(srcpos_loc,nsrc_loc,ishot,0,1);
1150 1151 1152 1153
                            }
                            /* calculate wavelet for each source point SH */
                            if(WAVETYPE==2||WAVETYPE==3){
                                signals_SH=NULL;
1154
                                signals_SH=wavelet(srcpos_loc,nsrc_loc,ishot,1,1);
1155
                            }
Florian Wittkamp's avatar
Florian Wittkamp committed
1156
                            
1157 1158 1159
                            
                            /* initialize wavefield with zero */
                            if (L){
Florian Wittkamp's avatar
Florian Wittkamp committed
1160 1161 1162 1163 1164
                                if(!ACOUSTIC) {
                                    zero_fdveps_visc(-nd+1,NY+nd,-nd+1,NX+nd,pvx,pvy,pvz,psxx,psyy,psxy,psxz,psyz,ux,uy,uxy,pvxp1,pvyp1,psi_sxx_x,psi_sxy_x,psi_sxz_x,psi_vxx,psi_vyx,psi_vzx,psi_syy_y,psi_sxy_y,psi_syz_y,psi_vyy,psi_vxy,psi_vzy,psi_vxxs,pr,pp,pq,pt,po);
                                } else {
                                    zero_fdveps_viscac(-nd+1, NY+nd, -nd+1, NX+nd, pvx, pvy, psp, pvxp1, pvyp1, psi_sxx_x, psi_sxy_x, psi_vxx, psi_vyx, psi_syy_y, psi_sxy_y, psi_vyy, psi_vxy, psi_vxxs, pp);
                                }
1165 1166 1167 1168 1169 1170 1171
                            }else{
                                if(!ACOUSTIC)
                                    zero_fdveps(-nd+1,NY+nd,-nd+1,NX+nd,pvx,pvy,pvz,psxx,psyy,psxy,psxz,psyz,ux,uy,uxy,pvxp1,pvyp1,psi_sxx_x,psi_sxy_x,psi_sxz_x,psi_vxx,psi_vyx,psi_vzx,psi_syy_y,psi_sxy_y,psi_syz_y,psi_vyy,psi_vxy,psi_vzy,psi_vxxs);
                                else
                                    zero_fdveps_ac(-nd+1,NY+nd,-nd+1,NX+nd,pvx,pvy,psp,pvxp1,pvyp1,psi_sxx_x,psi_sxy_x,psi_vxx,psi_vyx,psi_syy_y,psi_sxy_y,psi_vyy,psi_vxy,psi_vxxs);
                            }
                            
1172
                            if((!VERBOSE)&&(MYID==0)) fprintf(FP,"\n ****************************************\n ");
1173
                            
1174 1175 1176
                            /*------------------------------------------------------------------------------*/
                            /*----------------------  start loop over timesteps ( STF ) --------------------*/
                            /*------------------------------------------------------------------------------*/
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
                            
                            lsnap=iround(TSNAP1/DT);
                            lsamp=NDT;
                            nsnap=0;
                            
                            hin=1;
                            hin1=1;
                            
                            imat=1;
                            imat1=1;
                            imat2=1;
                            hi=1;
                            
                            for (nt=1;nt<=NT;nt++){
                                
                                infoout = !(nt%nt_out);
1193
                                if((!VERBOSE)&&(MYID==0)) if(!(nt%(NT/40))) fprintf(FP,"*");
1194
                                
1195 1196 1197 1198
                                /* Check if simulation is still stable P and SV */
                                if (WAVETYPE==1 || WAVETYPE==3) {
                                    if (isnan(pvy[NY/2][NX/2])) {
                                        fprintf(FP,"\n Time step: %d; pvy: %f \n",nt,pvy[NY/2][NX/2]);
1199
                                        declare_error(" Simulation is unstable !");
1200 1201 1202 1203 1204 1205 1206
                                    }
                                }
                                
                                /* Check if simulation is still stable SH */
                                if (WAVETYPE==2 || WAVETYPE==3) {
                                    if (isnan(pvz[NY/2][NX/2])) {
                                        fprintf(FP,"\n Time step: %d; pvy: %f \n",nt,pvy[NY/2][NX/2]);
1207
                                        declare_error(" Simulation is unstable !");
1208 1209
                                    }
                                }
1210 1211 1212 1213 1214 1215
                                
                                if (MYID==0){
                                    if (infoout)  fprintf(FP,"\n Computing timestep %d of %d \n",nt,NT);
                                    time3=MPI_Wtime();
                                }
                                
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
                                /* update of particle velocities */
                                if(!ACOUSTIC) {
                                    if (WAVETYPE==1 || WAVETYPE==3) {
                                        update_v_PML(1, NX, 1, NY, nt, pvx, pvxp1, pvxm1, pvy, pvyp1, pvym1, uttx, utty, psxx, psyy, psxy, prip, prjp, srcpos_loc,signals,signals,nsrc_loc,absorb_coeff,hc,infoout,0, K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half, psi_sxx_x, psi_syy_y, psi_sxy_y, psi_sxy_x);
                                    }
                                    
                                    if (WAVETYPE==2 || WAVETYPE==3) {
                                        update_v_PML_SH(1, NX, 1, NY, nt, pvz, pvzp1, pvzm1, psxz, psyz,prjp, srcpos_loc, signals, signals_SH, nsrc_loc, absorb_coeff,hc,infoout,0, K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half, psi_sxz_x, psi_syz_y);
                                    }
                                } else {
1226
                                    update_v_acoustic_PML(1, NX, 1, NY, nt, pvx, pvxp1, pvxm1, pvy, pvyp1, pvym1, psp, prip, prjp, srcpos_loc,signals,signals,nsrc_loc,absorb_coeff,hc,infoout,0, K_x_half, a_x_half, b_x_half, K_y_half, a_y_half, b_y_half, psi_sxx_x, psi_syy_y);
1227 1228
                                }

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
                                
                                if (MYID==0){
                                    time4=MPI_Wtime();
                                    time_av_v_update+=(time4-time3);
                                    if (infoout)  fprintf(FP," particle velocity exchange between PEs ...");
                                }
                                
                                /* exchange of particle velocities between PEs */
                                exchange_v(pvx,pvy,pvz, bufferlef_to_rig, bufferrig_to_lef, buffertop_to_bot, bufferbot_to_top, req_send, req_rec,wavetype_start);
                                
                                if (MYID==0){
                                    time5=MPI_Wtime();
                                    time_av_v_exchange+=(time5-time4);
                                    if (infoout)  fprintf(FP," finished (real time: %4.2f s).\n",time5-time4);
                                }
                                
                                if (L) {   /* viscoelastic */
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
                                    if (WAVETYPE==1 || WAVETYPE==3) {
                                        if(!ACOUSTIC) {
                                            update_s_visc_PML(1, NX, 1, NY, pvx, pvy, ux, uy, uxy, uyx, psxx, psyy, psxy, ppi, pu, puipjp, prho, hc, infoout, pr, pp, pq, fipjp, f, g, bip, bjm, cip, cjm, d, e, dip, K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half, psi_vxx, psi_vyy, psi_vxy, psi_vyx);
                                        }else{
                                            update_p_visc_PML(1, NX, 1, NY, pvx, pvy, psp, ppi, prho, hc, infoout, pp, g, bjm, cjm, e, K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half, psi_vxx, psi_vyy, psi_vxy, psi_vyx);
                                        }
                                    }
                                    if (WAVETYPE==2 || WAVETYPE==3) {
                                        update_s_visc_PML_SH(1, NX, 1, NY, pvz, psxz, psyz, pt, po, bip, bjm, cip, cjm, d, dip,fipjp, f, hc,infoout, K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half,psi_vzx, psi_vzy);
                                    }
                                } else {   /* elastic */
                                    if (WAVETYPE==1 || WAVETYPE==3) {
                                        if(!ACOUSTIC) {
                                            update_s_elastic_PML(1, NX, 1, NY, pvx, pvy, ux, uy, uxy, uyx, psxx, psyy, psxy, ppi, pu, puipjp, absorb_coeff, prho, hc, infoout, K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half, psi_vxx, psi_vyy, psi_vxy, psi_vyx);
                                        } else {
1261
                                            update_p_PML(1, NX, 1, NY, pvx, pvy, psp, u, ppi, absorb_coeff, prho, hc, infoout, K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half, psi_vxx, psi_vyy, psi_vxy, psi_vyx);
1262 1263 1264 1265
                                        }
                                    }
                                    if (WAVETYPE==2 || WAVETYPE==3) {
                                        update_s_elastic_PML_SH(1, NX, 1, NY, pvz,psxz,psyz,uxz,uyz,hc,infoout, K_x, a_x, b_x, K_x_half, a_x_half, b_x_half, K_y, a_y, b_y, K_y_half, a_y_half, b_y_half,psi_vzx, psi_vzy,puipjp,pu,prho);
Florian Wittkamp's avatar
Florian Wittkamp committed
1266
                                    }
1267 1268 1269
                                }
                                
                                /* explosive source */
1270
                                if ((SOURCE_TYPE==1))
1271 1272
                                    psource(nt,psxx,psyy,psp,srcpos_loc,signals,nsrc_loc,0);
                                
1273

1274
                                /* Applying free surface condition */
Florian Wittkamp's avatar
Florian Wittkamp committed
1275 1276
                                if ((FREE_SURF) && (POS[2]==0)){
                                    if (!ACOUSTIC){
1277 1278
                                        if (L){
                                            /* viscoelastic */
1279
                                            surface_PML(1, pvx, pvy, psxx, psyy, psxy,psyz, pp, pq, ppi, pu, prho, ptaup, ptaus, etajm, peta, hc, K_x, a_x, b_x, psi_vxxs, ux, uy,uxy,uyz,psxz,uxz);
1280 1281
                                        }else{
                                            /* elastic */
1282
                                            surface_elastic_PML(1, pvx, pvy, psxx, psyy, psxy,psyz, ppi, pu, prho, hc, K_x, a_x, b_x, psi_vxxs, ux, uy, uxy,uyz,psxz,uxz);
Florian Wittkamp's avatar
Florian Wittkamp committed
1283
                                        }
1284 1285
                                    } else {
                                        /* viscoelastic and elastic ACOUSTIC */
Florian Wittkamp's avatar
Florian Wittkamp committed
1286
                                        surface_acoustic_PML(1, psp);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
                                    }
                                }
                                
                                if (MYID==0){
                                    time6=MPI_Wtime();
                                    time_av_s_update+=(time6-time5);
                                    if (infoout)  fprintf(FP," stress exchange between PEs ...");
                                }
                                
                                
                                /* stress exchange between PEs */
                                if(!ACOUSTIC)
                                    exchange_s(psxx,psyy,psxy,psxz,psyz,bufferlef_to_rig, bufferrig_to_lef,buffertop_to_bot, bufferbot_to_top,req_send, req_rec,wavetype_start);
                                else
                                    exchange_p(psp,bufferlef_to_rig, bufferrig_to_lef,buffertop_to_bot, bufferbot_to_top,req_send, req_rec);
                                
                                if (MYID==0){
                                    time7=MPI_Wtime();
                                    time_av_s_exchange+=(time7-time6);
                                    if (infoout)  fprintf(FP," finished (real time: %4.2f s).\n",time7-time6);
                                }
                                
                                /* store amplitudes at receivers in section-arrays */
                                if (SEISMO){
                                    seismo_ssg(nt, ntr, recpos_loc, sectionvx, sectionvy,sectionvz,sectionp, sectioncurl, sectiondiv,pvx, pvy,pvz, psxx, psyy, psp, ppi, pu, hc);
                                    /*lsamp+=NDT;*/
                                }
                                
                                if (MYID==0){
                                    time8=MPI_Wtime();
                                    time_av_timestep+=(time8-time3);
                                    if (infoout)  fprintf(FP," total real time for timestep %d : %4.2f s.\n",nt,time8-time3);
                                }
                                
1321 1322 1323 1324 1325 1326 1327
                            }
                            
                            /*------------------------------------------------------------------------------*/
                            /*--------------------  End  of loop over timesteps (   STF   ) ----------------*/
                            /*------------------------------------------------------------------------------*/
                            
                            if((!VERBOSE)&&(MYID==0)) fprintf(FP,"\n");
1328
                            
1329
                            // Exchange measured seismogramms and save it to file
1330 1331
                            switch (SEISMO){
                                case 1 : 	/* particle velocities only */
1332 1333 1334 1335 1336
                                    if (WAVETYPE==1 || WAVETYPE==3) {
                                        catseis(sectionvx, fulldata_vx, recswitch, ntr_glob, MPI_COMM_WORLD);
                                        catseis(sectionvy, fulldata_vy, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    }
                                    if (WAVETYPE==2 || WAVETYPE==3) {
1337 1338
                                        catseis(sectionvz, fulldata_vz, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    }
1339 1340 1341
                                    if(LNORM==8){
                                        calc_envelope(fulldata_vy,fulldata_vy,ns,ntr_glob);
                                        calc_envelope(fulldata_vx,fulldata_vx,ns,ntr_glob);}
1342
                                    if (MYID==0){
1343
                                        saveseis_glob(FP,fulldata_vx,fulldata_vy,fulldata_vz,fulldata_p,fulldata_curl,fulldata_div,recpos,recpos_loc,ntr_glob,srcpos,ishot,ns,iter,1);}
1344 1345 1346 1347
                                    break;
                                    
                                case 2 :	/* pressure only */
                                    catseis(sectionp, fulldata_p, recswitch, ntr_glob, MPI_COMM_WORLD);
1348
                                    if (MYID==0) saveseis_glob(FP,fulldata_vx,fulldata_vy,fulldata_vz,fulldata_p,fulldata_curl,fulldata_div,recpos,recpos_loc,ntr_glob,srcpos,ishot,ns,iter,1);
1349 1350 1351 1352 1353
                                    break;
                                    
                                case 3 : 	/* curl and div only */
                                    catseis(sectiondiv, fulldata_div, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    catseis(sectioncurl, fulldata_curl, recswitch, ntr_glob, MPI_COMM_WORLD);
1354
                                    if (MYID==0) saveseis_glob(FP,fulldata_vx,fulldata_vy,fulldata_vz,fulldata_p,fulldata_curl,fulldata_div,recpos,recpos_loc,ntr_glob,srcpos,ishot,ns,iter,1);
1355 1356 1357
                                    break;
                                    
                                case 4 :	/* everything */
1358 1359 1360 1361 1362
                                    if (WAVETYPE==1 || WAVETYPE==3) {
                                        catseis(sectionvx, fulldata_vx, recswitch, ntr_glob, MPI_COMM_WORLD);
                                        catseis(sectionvy, fulldata_vy, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    }
                                    if (WAVETYPE==2 || WAVETYPE==3) {
1363 1364
                                        catseis(sectionvz, fulldata_vz, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    }
1365
                                    catseis(sectionp, fulldata_p, recswitch, ntr_glob, MPI_COMM_WORLD);
1366 1367
                                    catseis(sectiondiv, fulldata_div, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    catseis(sectioncurl, fulldata_curl, recswitch, ntr_glob, MPI_COMM_WORLD);
1368
                                    if (MYID==0) saveseis_glob(FP,fulldata_vx,fulldata_vy,fulldata_vz,fulldata_p,fulldata_curl,fulldata_div,recpos,recpos_loc,ntr_glob,srcpos,ishot,ns,iter,1);
1369 1370 1371
                                    break;
                                    
                                case 5 :	/* everything except curl and div*/
1372 1373 1374 1375 1376
                                    if (WAVETYPE==1 || WAVETYPE==3) {
                                        catseis(sectionvx, fulldata_vx, recswitch, ntr_glob, MPI_COMM_WORLD);
                                        catseis(sectionvy, fulldata_vy, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    }
                                    if (WAVETYPE==2 || WAVETYPE==3) {
1377 1378 1379
                                        catseis(sectionvz, fulldata_vz, recswitch, ntr_glob, MPI_COMM_WORLD);
                                    }
                                    catseis(sectionp, fulldata_p, recswitch, ntr_glob, MPI_COMM_WORLD);
1380
                                    if (MYID==0) saveseis_glob(FP,fulldata_vx,fulldata_vy,fulldata_vz,fulldata_p,fulldata_curl,fulldata_div,recpos,recpos_loc,ntr_glob,srcpos,ishot,ns,iter,1);
1381 1382 1383 1384
                                    break;
                                    
                            } /* end of switch (SEISMO) */
                            
1385 1386 1387
                            /*------------------------------------------------------------------------------*/
                            /*----------- Start of inversion of source time function -----------------------*/
                            /*------------------------------------------------------------------------------*/
1388 1389
                            if((TIME_FILT==1) ||(TIME_FILT==2)){
                                
1390
                                if (!FORWARD_ONLY){
1391
                                    if((INV_STF==1)&&((iter==1)||(do_stf==1))){
1392 1393 1394 1395
                                        
                                        if (nsrc_loc>0){
                                            
                                            /*time domain filtering of the observed data sectionvy_obs */
1396 1397 1398
                                            if(WAVETYPE==1 || WAVETYPE==3){
                                                if ((ADJOINT_TYPE==1)|| (ADJOINT_TYPE==2)){
                                                    inseis(fprec,ishot,sectionvy_obs,ntr_glob,ns,2,iter);
1399
                                                    timedomain_filt(sectionvy_obs,F_LOW_PASS,ORDER,ntr_glob,ns,1);
1400 1401 1402
                                                }
                                                if (ADJOINT_TYPE==4){
                                                    inseis(fprec,ishot,sectionp_obs,ntr_glob,ns,9,iter);
1403
                                                    timedomain_filt(sectionp_obs,F_LOW_PASS,ORDER,ntr_glob,ns,1);
1404
                                                }
1405
                                            }
1406 1407 1408
                                            
                                            if(WAVETYPE==2 || WAVETYPE==3){
                                                inseis(fprec,ishot,sectionvz_obs,ntr_glob,ns,10,iter);
1409
                                                timedomain_filt(sectionvz_obs,F_LOW_PASS,ORDER,ntr_glob,ns,1);
1410 1411 1412
                                            }
                                            
                                            printf("\n ====================================================================================================== \n");
1413
                                            printf("\n Time Domain Filter is used for the inversion: lowpass filter, corner frequency of %.2f Hz, order %d\n",F_LOW_PASS,ORDER);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
                                            printf("\n ====================================================================================================== \n");
                                            
                                            if(iter==1){
                                                printf("\n ====================================================== \n");
                                                printf("\n MYID = %d: STF inversion at first iteration \n",MYID);
                                            }
                                            else{
                                                printf("\n ================================================================================================ \n");
                                                printf("\n MYID = %d: STF inversion because of frequency step at the end of the last iteration \n",MYID);
                                            }
                                            
1425 1426
                                            if(WAVETYPE==1 || WAVETYPE==3){
                                                if ((ADJOINT_TYPE==1)|| (ADJOINT_TYPE==2)){
1427
                                                    stf(FP,fulldata_vy,sectionvy_obs,sectionvy_conv,source_time_function,recpos,recpos_loc,ntr_glob,ntr,srcpos,ishot,ns,iter,nsrc_glob,F_LOW_PASS,0,nsrc_glob);
1428 1429
                                                }
                                                if (ADJOINT_TYPE==4){
1430
                                                    stf(FP,fulldata_p,sectionp_obs,sectionp_conv,source_time_function,recpos,recpos_loc,ntr_glob,ntr,srcpos,ishot,ns,iter,nsrc_glob,F_LOW_PASS,0,nsrc_glob);
1431
                                                }
1432
                                            }
1433 1434
                                            
                                            if(WAVETYPE==2 || WAVETYPE==3){
1435
                                                stf(FP,fulldata_vz,sectionvz_obs,sectionvz_conv,source_time_function,recpos,recpos_loc,ntr_glob,ntr,srcpos,ishot,ns,iter,nsrc_glob,F_LOW_PASS,1,nsrc_glob);
1436
                                            }
1437
                                            
Florian Wittkamp's avatar
Florian Wittkamp committed
1438

1439 1440 1441 1442
                                        }
                                    }
                                }
                            
1443
                            } else {
1444
                                
1445
                                if (FORWARD_ONLY==0){
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
                                    if((INV_STF==1)&&(iter==N_STF_START)){
                                        
                                        if(ishot==nshots){
                                            N_STF_START=N_STF_START+N_STF;
                                        }
                                        
                                        if (nsrc_loc>0){
                                            printf("\n ====================================================== \n");
                                            printf("\n MYID = %d: STF inversion due to the increment N_STF \n",MYID);
                                            
1456 1457 1458 1459 1460 1461 1462 1463 1464
                                            if(WAVETYPE==1 || WAVETYPE==3){
                                                if ((ADJOINT_TYPE==1)|| (ADJOINT_TYPE==2)){
                                                    inseis(fprec,ishot,sectionvy_obs,ntr_glob,ns,2,iter);
                                                }
                                                if (ADJOINT_TYPE==4){
                                                    inseis(fprec,ishot,sectionp_obs,ntr_glob,ns,9,iter);
                                                }
                                                
                                                if ((ADJOINT_TYPE==1)|| (ADJOINT_TYPE==2)){
1465
                                                    stf(FP,fulldata_vy,sectionvy_obs,sectionvy_conv,source_time_function,recpos,recpos_loc,ntr_glob,ntr,srcpos,ishot,ns,iter,nsrc_glob,F_LOW_PASS,0,nsrc_glob);
1466 1467
                                                }
                                                if (ADJOINT_TYPE==4){
1468
                                                    stf(FP,fulldata_p,sectionp_obs,sectionp_conv,source_time_function,recpos,recpos_loc,ntr_glob,ntr,srcpos,ishot,ns,iter,nsrc_glob,F_LOW_PASS,0,nsrc_glob);
1469
                                                }
1470
                                            }
1471 1472
                                            if(WAVETYPE==2 || WAVETYPE==3){
                                                inseis(fprec,ishot,sectionvz_obs,ntr_glob,ns,10,iter);
1473
                                                stf(FP,fulldata_vz,sectionvz_obs,sectionvz_conv,source_time_function,recpos,recpos_loc,ntr_glob,ntr,srcpos,ishot,ns,iter,nsrc_glob,F_LOW_PASS,1,nsrc_glob);
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
                                            }
                                        }
                                    }
                                }
                            }
                            
                            
                            MPI_Barrier(MPI_COMM_WORLD);
                            
                            
                        }
                        
                        /*------------------------------------------------------------------------------*/
                        /*----------- End of inversion of source time function -------------------------*/
                        /*------------------------------------------------------------------------------*/
                        
                        fprintf(FP,"\n==================================================================================\n");
                        fprintf(FP,"\n MYID=%d * Starting simulation (forward model) for shot %d of %d. Iteration %d ** \n",MYID,ishot,nshots,iter);
1492
                        fprintf(FP,"\n==================================================================================\n");
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
                        
                        for (nt=1;nt<=8;nt++) srcpos1[nt][1]=srcpos[nt][ishot];
                        
                        /*-----------------------------------*/
                        /* determine source position on grid */
                        /*-----------------------------------*/
                        if (RUN_MULTIPLE_SHOTS){
                            /* find this single source positions on subdomains */
                            if (nsrc_loc>0) free_matrix(srcpos_loc,1,8,1,1);
                            srcpos_loc=splitsrc(srcpos1,&nsrc_loc, 1);
                        }else{
                            /* Distribute multiple source positions on subdomains */
                            srcpos_loc = splitsrc(srcpos,&nsrc_loc, nsrc);
                        }
                        
1508 1509 1510
                        /*-------------------*/
                        /*  Use STF wavelet  */
                        /*-------------------*/
Florian Wittkamp's avatar
Florian Wittkamp committed
1511
                        if(INV_STF){
1512
                            
1513
                            SOURCE_SHAPE=7;
1514 1515 1516 1517 1518 1519 1520
                            if( WAVETYPE==1 || WAVETYPE==3 ) fprintf(FP,"\n Using optimized source time function located in %s.shot%d \n",SIGNAL_FILE,ishot);
                            
                            if( WAVETYPE==2 || WAVETYPE==3 ) {
                                SOURCE_SHAPE_SH=7;
                                fprintf(FP,"\n Using optimized source time function located in %s.shot%d  \n",SIGNAL_FILE_SH,ishot);
                            }
                            
Florian Wittkamp's avatar
Florian Wittkamp committed
1521 1522
                        }
                        
1523 1524 1525 1526 1527 1528 1529 1530
                        MPI_Barrier(MPI_COMM_WORLD);
                        
                        /*-------------------*/
                        /* calculate wavelet */
                        /*-------------------*/
                        /* calculate wavelet for each source point P SV */
                        if(WAVETYPE==1||WAVETYPE==3){
                            signals=NULL;
1531
                            signals=wavelet(srcpos_loc,nsrc_loc,ishot,0,0);
1532 1533 1534 1535
                        }
                        /* calculate wavelet for each source point SH */
                        if(WAVETYPE==2||WAVETYPE==3){
                            signals_SH=NULL;
1536
                            signals_SH=wavelet(srcpos_loc,nsrc_loc,ishot,1,0);
1537 1538 1539 1540 1541 1542
                        }
                        
                        /*------------------------------------------------------------------------------*/
                        /*----------- Start of Time Domain Filtering -----------------------------------*/
                        /*------------------------------------------------------------------------------*/
                        
1543
                        if (((TIME_FILT==1) || (TIME_FILT==2)) && (SOURCE_SHAPE!=6) && (INV_STF==0)){
1544
                            fprintf(FP,"\n Time Domain Filter applied: Lowpass with corner frequency of %.2f Hz, order %d\n",F_LOW_PASS,ORDER);
1545 1546
                            
                            /*time domain filtering of the source signal */
1547 1548
                            if(WAVETYPE==1||WAVETYPE==3) timedomain_filt(signals,F_LOW_PASS,ORDER,nsrc_loc,ns,1);
                            if(WAVETYPE==2||WAVETYPE==3) timedomain_filt(signals_SH,F_LOW_PASS,ORDER,nsrc_loc,ns,1);
1549 1550 1551 1552 1553 1554 1555 1556 1557
                            
                        }
                        /*------------------------------------------------------------------------------*/
                        /*----------- End of Time Domain Filtering -------------------------------------*/
                        /*------------------------------------------------------------------------------*/
                        
                        MPI_Barrier(MPI_COMM_WORLD);
                        
                        /* initialize wavefield with zero */
Florian Wittkamp's avatar
Florian Wittkamp committed
1558 1559 1560 1561 1562
                        if (L){
                            if(!ACOUSTIC) {
                                zero_fdveps_visc(-nd+1,NY+nd,-nd+1,NX+nd,pvx,pvy,pvz,psxx,psyy,psxy,psxz,psyz,ux,uy,uxy,pvxp1,pvyp1,psi_sxx_x,psi_sxy_x,psi_sxz_x,psi_vxx,psi_vyx,psi_vzx,psi_syy_y,psi_sxy_y,psi_syz_y,psi_vyy,psi_vxy,psi_vzy,psi_vxxs,pr,pp,pq,pt,po);
                            } else {
                                zero_fdveps_viscac(-nd+1, NY+nd, -nd+1, NX+nd, pvx, pvy, psp, pvxp1, pvyp1, psi_sxx_x, psi_sxy_x, psi_vxx, psi_vyx, psi_syy_y, psi_sxy_y, psi_vyy, psi_vxy, psi_vxxs, pp); }
1563 1564 1565 1566 1567 1568 1569 1570 1571
                        }else{
                            if(!ACOUSTIC)
                                zero_fdveps(-nd+1,NY+nd,-nd+1,NX+nd,pvx,pvy,pvz,psxx,psyy,psxy,psxz,psyz,ux,uy,uxy,pvxp1,pvyp1,psi_sxx_x,psi_sxy_x,psi_sxz_x,psi_vxx,psi_vyx,psi_vzx,psi_syy_y,psi_sxy_y,psi_syz_y,psi_vyy,psi_vxy,psi_vzy,psi_vxxs);
                            else
                                zero_fdveps_ac(-nd+1,NY+nd,-nd+1,NX+nd,pvx,pvy,psp,pvxp1,pvyp1,psi_sxx_x,psi_sxy_x,psi_vxx,psi_vyx,psi_syy_y,psi_sxy_y,psi_vyy,psi_vxy,psi_vxxs);
                        }
                        
                        /*initialize gradient matrices for each shot with zeros PSV*/
                        if(WAVETYPE==1 || WAVETYPE==3) {
1572
                            if(FORWARD_ONLY==0){
1573 1574
                                for(j=1;j<=NY;j=j+IDY){
                                    for(i=1;i<=NX;i=i+IDX){