update_s_visc_PML_SH.c 5.98 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*-----------------------------------------------------------------------------------------
 * Copyright (C) 2013  For the list of authors, see file AUTHORS.
 *
 * This file is part of DENISE.
 *
 * DENISE is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, version 2.0 of the License only.
 *
 * DENISE is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with DENISE. See file COPYING and/or <http://www.gnu.org/licenses/gpl-2.0.html>.
 -----------------------------------------------------------------------------------------*/

/*------------------------------------------------------------------------
 *   updating stress components at gridpoints [nx1...nx2][ny1...ny2]
 *   by a staggered grid finite difference scheme of arbitrary (FDORDER) order accuracy in space
 *   and second order accuracy in time
 *   T. Bohlen
 *
 *   SH-Version
 *
 *  ----------------------------------------------------------------------*/

#include "fd.h"

void update_s_visc_PML_SH(int nx1, int nx2, int ny1, int ny2, float **  vz, float **   sxz, float **   syz, float ***t, float ***o, float ** uip, float ** ujp, float ** tausip, float ** tausjp, float *bip, float *bjm, float *cip, float *cjm, float *etajm, float *etaip, float *hc,  int infoout,float * K_x, float * a_x, float * b_x, float * K_x_half, float * a_x_half, float * b_x_half,
                          float * K_y, float * a_y, float * b_y, float * K_y_half, float * a_y_half, float * b_y_half,float ** psi_vzx, float ** psi_vzy){
    
    int i,j, m, fdoh, h, h1, l;
    
    float vzx, vzy;
    
    float  dhi, dthalbe;
    extern float DT, DH;
    extern int MYID, FDORDER, FW, L;
    extern int FREE_SURF, BOUNDARY;
    extern int NPROCX, NPROCY, POS[3];
    extern FILE *FP;
    double time1, time2;
    
    float sumo=0.0, sumt=0.0;
    
    
    
    /*dhi = DT/DH;*/
    dhi=1.0/DH;
    fdoh = FDORDER/2;
    dthalbe = DT/2.0;
    
    
    if (infoout && (MYID==0)){
        time1=MPI_Wtime();
        fprintf(FP,"\n **Message from update_s_SH (printed by PE %d):\n",MYID);
        fprintf(FP," Updating stress components ...");
    }
    
    
    fprintf(FP," CHECK MATERIAL PARAMETER CHECK MATERIAL PARAMETER \n");
    switch (FDORDER){
            
        case 2:
            break;
            
        case 4:
            for (j=ny1;j<=ny2;j++){
                for (i=nx1;i<=nx2;i++){
                    vzx = (  hc[1]*(vz[j][i+1]-vz[j][i])
                           + hc[2]*(vz[j][i+2]-vz[j][i-1]))*dhi;
                    
                    vzy = (  hc[1]*(vz[j+1][i]-vz[j][i])
                           + hc[2]*(vz[j+2][i]-vz[j-1][i]))*dhi;
                    
                    
                    /* left boundary */
                    if((!BOUNDARY) && (POS[1]==0) && (i<=FW)){
                        psi_vzx[j][i] = b_x_half[i] * psi_vzx[j][i] + a_x_half[i] * vzx;
                        vzx = vzx / K_x_half[i] + psi_vzx[j][i];
                    }
                    
                    /* right boundary */
                    if((!BOUNDARY) && (POS[1]==NPROCX-1) && (i>=nx2-FW+1)){
                        h1 = (i-nx2+2*FW);
                        h = i;
                        psi_vzx[j][h1] = b_x_half[h1] * psi_vzx[j][h1] + a_x_half[h1] * vzx;
                        vzx = vzx / K_x_half[h1] + psi_vzx[j][h1];
                    }
                    
                    /* top boundary */
                    if((POS[2]==0) && (!(FREE_SURF)) && (j<=FW)){
                        psi_vzy[j][i] = b_y[j] * psi_vzy[j][i] + a_y[j] * vzy;
                        vzy = vzy / K_y[j] + psi_vzy[j][i];
                    }
                    
                    /* bottom boundary */
                    if((POS[2]==NPROCY-1) && (j>=ny2-FW+1)){
                        h1 = (j-ny2+2*FW);
                        h = j;
                        psi_vzy[h1][i] = b_y[h1] * psi_vzy[h1][i] + a_y[h1] * vzy;
                        vzy = vzy / K_y[h1] + psi_vzy[h1][i];
                    }
                    
                    
                    
                    /* computing sums of the old memory variables */
                    sumt=sumo=0.0;
                    for (l=1;l<=L;l++){
                        sumo+=o[j][i][l];
                        sumt+=t[j][i][l];
                    }
                    
                    /* updating components of the stress tensor, partially */
                    sxz[j][i]+=(uip[j][i]*DT*(1.0+L*tausip[j][i])*vzx)+(dthalbe*sumo);
                    syz[j][i]+=(ujp[j][i]*DT*(1.0+L*tausjp[j][i])*vzy)+(dthalbe*sumt);
                    
                    
                    /* now updating the memory-variables and sum them up*/
                    sumt=sumo=0.0;
                    for (l=1;l<=L;l++){
                        o[j][i][l]=bip[l]*(o[j][i][l]*cip[l]-(uip[j][i]*etaip[l]*tausip[j][i]*vzx));
                        t[j][i][l]=bjm[l]*(t[j][i][l]*cjm[l]-(ujp[j][i]*etajm[l]*tausjp[j][i]*vzy));
                        sumt+=t[j][i][l];
                        sumo+=o[j][i][l];
                    }
                    
                    /* and now the components of the stress tensor are
                     completely updated */
                    sxz[j][i]+=(dthalbe*sumo);
                    syz[j][i]+=(dthalbe*sumt);
                    //fprintf(FP," Signal: %f\n",sxz[j][i]);
                }
            }
            break;
            
        case 6:
            break;
            
        case 8:
            break;
            
        default:
            break;
            
    } /* end of switch(FDORDER) */
    
    
    if (infoout && (MYID==0)){
        time2=MPI_Wtime();
        fprintf(FP," finished (real time: %4.2f s).\n",time2-time1);
    }
}