write_par.c 27.7 KB
Newer Older
Tilman Steinweg's avatar
Tilman Steinweg committed
1
/*-----------------------------------------------------------------------------------------
Florian Wittkamp's avatar
Florian Wittkamp committed
2
 * Copyright (C) 2016  For the list of authors, see file AUTHORS.
Tilman Steinweg's avatar
Tilman Steinweg committed
3
 *
Florian Wittkamp's avatar
Florian Wittkamp committed
4
 * This file is part of IFOS.
5
 *
Florian Wittkamp's avatar
Florian Wittkamp committed
6
 * IFOS is free software: you can redistribute it and/or modify
Tilman Steinweg's avatar
Tilman Steinweg committed
7 8
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, version 2.0 of the License only.
9
 *
Florian Wittkamp's avatar
Florian Wittkamp committed
10
 * IFOS is distributed in the hope that it will be useful,
Tilman Steinweg's avatar
Tilman Steinweg committed
11 12 13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
14
 *
Tilman Steinweg's avatar
Tilman Steinweg committed
15
 * You should have received a copy of the GNU General Public License
Florian Wittkamp's avatar
Florian Wittkamp committed
16
 * along with IFOS. See file COPYING and/or <http://www.gnu.org/licenses/gpl-2.0.html>.
17
 -----------------------------------------------------------------------------------------*/
Tilman Steinweg's avatar
Tilman Steinweg committed
18 19

/*------------------------------------------------------------------------
20
 *   Write FD-Parameters to stdout
Tilman Steinweg's avatar
Tilman Steinweg committed
21 22 23 24 25 26
 *  ----------------------------------------------------------------------*/

#include "fd.h"

/* printing all important parameters on stdout */
void write_par(FILE *fp){
27 28 29 30 31 32 33 34 35 36 37
    
    /* declaration of extern variables */
    extern int   NX, NY, NT, SOURCE_SHAPE, SOURCE_TYPE, FDORDER, MAXRELERROR;
    extern int  SNAP, SNAP_FORMAT, ACOUSTIC, L, SRCREC, TAPER;
    extern float DH, TIME, DT, TS, *FL, TAU, VPPML, PLANE_WAVE_DEPTH, PHI, FPML, npower, k_max_PML, F_REF;
    extern float REC_ARRAY_DEPTH, REC_ARRAY_DIST;
    extern float XREC1, XREC2, YREC1, YREC2;
    extern int SEISMO, NDT, NGEOPH, SEIS_FORMAT, FREE_SURF, FW;
    extern int  READMOD, READREC, BOUNDARY, REC_ARRAY, DRX, INVTYPE;
    extern float TSNAP1, TSNAP2, TSNAPINC, REFREC[4];
    extern char SNAP_FILE[STRING_SIZE], SOURCE_FILE[STRING_SIZE], REC_FILE[STRING_SIZE];
38 39
    extern char SEIS_FILE[STRING_SIZE];
    extern char SIGNAL_FILE[STRING_SIZE];
40 41 42 43 44 45 46 47 48 49 50 51 52
    extern char  MFILE[STRING_SIZE], JACOBIAN[STRING_SIZE], DATA_DIR[STRING_SIZE],FREQ_FILE[STRING_SIZE];
    extern int NP, NPROCX, NPROCY, MYID;
    
    extern int GRADT1, GRADT2, GRADT3, GRADT4, ITERMAX, PARAMETERIZATION, FORWARD_ONLY, ADJOINT_TYPE;
    extern int  GRAD_METHOD;
    extern float TSHIFT_back;
    extern int FILT_SIZE, MODEL_FILTER;
    extern int FILT_SIZE_GRAD, GRAD_FILTER;
    
    extern int TESTSHOT_START, TESTSHOT_END, TESTSHOT_INCR, NO_OF_TESTSHOTS;
    extern int SWS_TAPER_GRAD_VERT, SWS_TAPER_GRAD_HOR, SWS_TAPER_GRAD_SOURCES, SWS_TAPER_CIRCULAR_PER_SHOT, SRTSHAPE, FILTSIZE;
    extern int SWS_TAPER_FILE, SWS_TAPER_FILE_PER_SHOT;
    extern float SRTRADIUS;
53
    extern char TAPER_FILE_NAME[STRING_SIZE];
54 55 56 57 58 59 60 61 62 63 64
    extern int SPATFILTER, SPAT_FILT_SIZE, SPAT_FILT_1, SPAT_FILT_ITER;
    extern int INV_RHO_ITER, INV_VP_ITER, INV_VS_ITER;
    extern int MIN_ITER;;
    extern char INV_MODELFILE[STRING_SIZE];
    extern int nfstart, nf;
    extern int nfstart_jac, nf_jac;
    extern float VPUPPERLIM, VPLOWERLIM, VSUPPERLIM, VSLOWERLIM, RHOUPPERLIM, RHOLOWERLIM;
    
    extern int INV_STF, N_STF, N_STF_START;
    extern char PARA[STRING_SIZE];
    
65
    extern int TIME_FILT, ORDER;
66
    extern float F_LOW_PASS_START, F_LOW_PASS_END, F_LOW_PASS_INCR;
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    extern int LNORM, DTINV;
    extern int STEPMAX, TRKILL, TRKILL_STF;
    
    extern int TRKILL_OFFSET;
    extern float TRKILL_OFFSET_LOWER;
    extern float TRKILL_OFFSET_UPPER;
    
    extern float EPS_SCALE, SCALEFAC;
    extern float PRO;
    extern char  TRKILL_FILE[STRING_SIZE], TRKILL_FILE_STF[STRING_SIZE];
    
    extern int TIMEWIN, NORMALIZE;
    extern float TWLENGTH_PLUS, TWLENGTH_MINUS, GAMMA;
    extern char PICKS_FILE[STRING_SIZE];
    
    extern char MISFIT_LOG_FILE[STRING_SIZE];
    
    extern int VELOCITY;
    
    extern float WATERLEVEL_LNORM8;
    
    extern float VP_VS_RATIO;
    
    extern int S;
    
    extern float S_VP, S_VS, S_RHO;
    
    extern int GRAD_FILT_WAVELENGTH;
    extern float A;
    
    /* definition of local variables */
    int l;
    
    
    fprintf(fp,"\n **Message from write_par (printed by PE %d):\n",MYID);
    fprintf(fp,"\n");
    fprintf(fp,"------------------------- Processors ------------------------\n");
    fprintf(fp," Number of PEs in x-direction (NPROCX): %d\n",NPROCX);
    fprintf(fp," Number of PEs in vertical direction (NPROCY): %d\n",NPROCY);
    fprintf(fp," Total number of PEs in use: %d\n",NP);
    fprintf(fp,"\n");
    fprintf(fp," ----------------------- Discretization  ---------------------\n");
    fprintf(fp," Number of gridpoints in x-direction (NX): %i\n", NX);
    fprintf(fp," Number of gridpoints in y-direction (NY): %i\n", NY);
    fprintf(fp," Grid-spacing (DH): %e meter\n", DH);
    fprintf(fp," Time of wave propagation (T): %e seconds\n",TIME);
    fprintf(fp," Timestep (DT): %e seconds\n", DT);
    fprintf(fp," Number of timesteps: %i \n",NT);
    fprintf(fp,"\n");
    fprintf(fp," ------------------------- FD ORDER -----------------------------\n");
    fprintf(fp," FDORDER = %d\n",FDORDER);
    fprintf(fp," MAXRELERROR = %d\n",MAXRELERROR);
    fprintf(fp,"\n");
    fprintf(fp," ------------------------- SOURCE -----------------------------\n");
    
    if (SRCREC){
        fprintf(fp," reading source positions, time delay, centre frequency \n");
        fprintf(fp," and initial amplitude from ASCII-file \n");
        fprintf(fp,"\t%s\n\n",SOURCE_FILE);
    } else {
        fprintf(fp," plane wave excitation: depth= %5.2f meter \n",PLANE_WAVE_DEPTH);
        fprintf(fp," incidence angle of plane P-wave (from vertical) PHI= %5.2f degrees \n",PHI);
        fprintf(fp," duration of source signal: %e seconds\n",TS);
        fprintf(fp," (centre frequency is approximately %e Hz)\n",1.0/TS);
    }
    
    
    fprintf(fp," wavelet of source:");
    
    switch (SOURCE_SHAPE){
        case 1 :
            fprintf(fp," Ricker\n");
            break;
        case 2 :
            fprintf(fp," Fuchs-Mueller\n");
            break;
        case 3 :
            fprintf(fp," reading from \n\t %s\n",SIGNAL_FILE);
            break;
        case 4 :
            fprintf(fp," sinus raised to the power of 3.0 \n");
            break;
        case 5 :
            fprintf(fp," 1st derivative of Gaussian \n");
            break;
        case 6 :
            fprintf(fp," Bandlimited Spike \n");
            break;
        case 7 :
156
            fprintf(fp," reading from \n\t %s.shot*.su in su format (one file for each shot)\n",SIGNAL_FILE);
157 158 159 160 161
            break;
        case 8 :
            fprintf(fp," Integral of sin^3 function\n");
            break;
        default :
Florian Wittkamp's avatar
Florian Wittkamp committed
162
            declare_error(" Sorry, incorrect specification of source wavelet ! ");
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    }
    
    fprintf(fp," Type of source:");
    switch (SOURCE_TYPE){
        case 1 :
            fprintf(fp," explosive source \n");
            break;
        case 2 :
            fprintf(fp," point source with directive force in x-direction\n");
            break;
        case 3 :
            fprintf(fp," point source with directive force in (vertical) y-direction\n");
            break;
        case 4 :
            fprintf(fp," rotated point source with directive force in x- and y-direction\n");
            break;
        default :
Florian Wittkamp's avatar
Florian Wittkamp committed
180
            declare_error(" Sorry, wrong source type specification ! ");
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    }
    
    fprintf(fp,"\n");
    
    if (SEISMO){
        fprintf(fp," ------------------------- RECEIVER  --------------------------\n");
        if (READREC){
            fprintf(fp," reading receiver positions from file \n");
            fprintf(fp,"\t%s\n\n",REC_FILE);
            fprintf(fp," reference_point_for_receiver_coordinate_system:\n");
            fprintf(fp," x=%f \ty=%f\t z=%f\n",REFREC[1], REFREC[2], REFREC[3]);
        } else if (REC_ARRAY>0){
            fprintf(fp," Horizontal lines of receivers.\n");
            fprintf(fp," number of lines: %d \n",REC_ARRAY);
            fprintf(fp," depth of upper line: %e m \n",REC_ARRAY_DEPTH);
            fprintf(fp," vertical increment between lines: %e m \n",REC_ARRAY_DIST);
            fprintf(fp," distance between receivers in x-direction within line: %i \n", DRX);
        }else{
            
            fprintf(fp," first receiver position (XREC1,YREC1) = (%e, %e) m\n",
                    XREC1,YREC1);
            fprintf(fp," last receiver position (XREC1,YREC1) = (%e, %e) m\n",
                    XREC2,YREC2);
            fprintf(fp,"\n");
        }
    }
    
    fprintf(fp," ------------------------- FREE SURFACE ------------------------\n");
    if (FREE_SURF) fprintf(fp," free surface at the top of the model ! \n");
    else fprintf(fp," no free surface at the top of the model ! \n");
    fprintf(fp,"\n");
    
    fprintf(fp," ------------------------- CPML ---------------------\n");
    if (FW>0.0){
        fprintf(fp," width of absorbing frame is %i gridpoints.\n",FW);
        fprintf(fp," CPML VPPML applied. \n");
        fprintf(fp," VPPML velocity in the PML frame in m/s: %f .\n",VPPML);
        fprintf(fp," Frequency within the PML frame in Hz: %f \n",FPML);
        fprintf(fp," npower: %f \n",npower);
        fprintf(fp," k_max: %f \n",k_max_PML);
    }
    else fprintf(fp," absorbing frame not installed ! \n");
    
    
    switch (BOUNDARY){
        case 0 :
            fprintf(fp," No periodic boundary condition.\n");
            break;
        case 1 :
            fprintf(fp," Periodic boundary condition at left and right edges.\n");
            break;
        default :
            warning(" Wrong integer value for BOUNDARY specified ! ");
            warning(" No periodic boundary condition will be applied ");
            BOUNDARY=0;
            break;
    }
    
    if (READMOD){
        fprintf(fp," ------------------------- MODEL-FILES -------------------------\n");
        fprintf(fp," names of model-files: \n");
        if(!ACOUSTIC){
            fprintf(fp,"\t shear wave velocities:\n\t %s.vs\n",MFILE);
            fprintf(fp,"\t tau for shear waves:\n\t %s.ts\n",MFILE);}
        if(ACOUSTIC) fprintf(fp,"\t acoustic modelling!\n");
        fprintf(fp,"\t density:\n\t %s.rho\n",MFILE);
        fprintf(fp,"\t compressional wave velocities:\n\t %s.vp\n",MFILE);
        if(!ACOUSTIC) fprintf(fp,"\t tau for P-waves:\n\t %s.tp\n",MFILE);
        for (l=1;l<=L;l++) fprintf(fp,"\t %1i. relaxation frequencies: %s.f%1i\n",l,MFILE,l);
    }
    
    if(L){
        fprintf(fp,"\n");
        fprintf(fp," ------------------------- Q-APROXIMATION --------------------\n");
        fprintf(fp," Number of relaxation mechanisms (L): %i\n",L);
        fprintf(fp," The L relaxation frequencies are at:  \n");
        for (l=1;l<=L;l++) fprintf(fp,"\t%f",FL[l]);
        fprintf(fp," Hz\n");
        fprintf(fp," Value for tau is : %f\n",TAU);
        if (F_REF<0) fprintf(fp," Center frequency of source wavelet is used as reference frequency.\n");
        else fprintf(fp," Reference frequency: F_REF = %f\n",F_REF);
    }
    
    if (SNAP){
        fprintf(fp,"\n");
        fprintf(fp," -----------------------  SNAPSHOTS  -----------------------\n");
        fprintf(fp," Snapshots of");
        switch(SNAP){
            case 1:
                fprintf(fp," x- and y-component");
                fprintf(fp," of particle velocity.\n");
                break;
            case 2:
                fprintf(fp," pressure field.\n");
                break;
            case 3:
                fprintf(fp," curl and divergence energy of the wavefield.\n");
                break;
            case 4:
                fprintf(fp," curl and divergence energy of the wavefield.\n");
                fprintf(fp," x- and y-component of particle velocity.\n");
                break;
            default:
Florian Wittkamp's avatar
Florian Wittkamp committed
284
                declare_error(" sorry, incorrect value for SNAP ! \n");
285 286 287 288 289 290 291 292 293 294
        }
        
        fprintf(fp," \t first (TSNAP1)= %8.5f s\n", TSNAP1);
        fprintf(fp," \t last (TSNAP2)=%8.5f s\n",TSNAP2);
        fprintf(fp," \t increment (TSNAPINC) =%8.5f s\n\n",TSNAPINC);
        fprintf(fp," \t first_and_last_horizontal(x)_gridpoint = %i, %i \n",1,NX);
        fprintf(fp," \t first_and_last_vertical_gridpoint = %i, %i \n",1,NY);
        fprintf(fp," \n name of output-file (SNAP_FILE):\n\t %s\n",SNAP_FILE);
        switch (SNAP_FORMAT){
            case 1 :
Florian Wittkamp's avatar
Florian Wittkamp committed
295
                declare_error(" SU-Format not yet available !!");
296 297 298 299 300 301 302 303
                break;
            case 2 :
                fprintf(fp," The data is written in ASCII. \n");
                break;
            case 3 :
                fprintf(fp," The data is written binary (IEEE) (4 byte per float)");
                break;
            default:
Florian Wittkamp's avatar
Florian Wittkamp committed
304
                declare_error(" Don't know the format for the Snapshot-data ! \n");
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
        }
        
        fprintf(fp,"\n\n");
    }
    if (SEISMO){
        fprintf(fp,"\n");
        fprintf(fp," -----------------------  SEISMOGRAMS  ----------------------\n");
        if ((SEISMO==1) || (SEISMO==4) || (SEISMO==5)){
            fprintf(fp," seismograms of ");
            fprintf(fp," x- and y-component");
            fprintf(fp," of particle velocity.\n");
            fprintf(fp," output-files: \n ");
            fprintf(fp,"\t%s\n\t%s\n",SEIS_FILE,SEIS_FILE);
        }
        if ((SEISMO==2) || (SEISMO==4) || (SEISMO==5)){
            fprintf(fp," seismograms of pressure field (hydrophones).\n");
            fprintf(fp," output-file: \n ");
            fprintf(fp,"\t%s\n",SEIS_FILE);
        }
        if ((SEISMO==3) || (SEISMO==4)){
            fprintf(fp," seismograms of curl and div.\n");
            fprintf(fp," output-files: \n ");
            fprintf(fp,"\t%s\n\t%s\n",SEIS_FILE,SEIS_FILE);
            
        }
        
        switch (SEIS_FORMAT){
            case 1 :
                fprintf(fp," The data is written in IEEE SU-format . \n");
                break;
            case 2 :
                fprintf(fp," The data is written in ASCII. \n");
                break;
            case 3 :
                fprintf(fp," The data is written binary IEEE (4 byte per float)");
                break;
            default:
Florian Wittkamp's avatar
Florian Wittkamp committed
342
                declare_error(" Sorry. I don't know the format for the seismic data ! \n");
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
        }
        fprintf(fp," samplingrate of seismic data: %f s\n",NDT*DT);
        if (!READREC) fprintf(fp," Trace-spacing: %5.2f m\n", NGEOPH*DH);
        fprintf(fp," Number of samples per trace: %i \n", iround(NT/NDT));
        fprintf(fp," ----------------------------------------------------------\n");
        fprintf(fp,"\n");
        fprintf(fp,"\n");
    }
    fprintf(fp,"\n");
    fprintf(fp," -----------------------  IFOS elastic specific parameters  ----------------------\n");
    if (FORWARD_ONLY==1){
        fprintf(fp," FORWARD_ONLY=%d: Only forward modeling is applied.\n",FORWARD_ONLY);}
    else {
        if (FORWARD_ONLY==0){
            fprintf(fp," FORWARD_ONLY=%d: FWI is applied.\n",FORWARD_ONLY);}
        
        fprintf(fp,"\n Maximum number of iterations: %d\n",ITERMAX);
        fprintf(fp," location of the measured seismograms : \n ");
        fprintf(fp,"\t%s\n\n",DATA_DIR);
        if (PARAMETERIZATION==1){
            fprintf(fp," PARAMETERIZATION=%d: Inversion parameters are vp, vs and rho.\n",PARAMETERIZATION);}
        if (PARAMETERIZATION==2){
            fprintf(fp," PARAMETERIZATION=%d: Inversion parameters are Zp, Zs and rho.\n",PARAMETERIZATION);}
        if (PARAMETERIZATION==3){
            fprintf(fp," PARAMETERIZATION=%d: Inversion parameters are lambda, mu and rho.\n",PARAMETERIZATION);}
        fprintf(fp,"\n INVTYPE = %d\n\n",INVTYPE);
        if (ADJOINT_TYPE==1){
            fprintf(fp," ADJOINT_TYPE=%d: Inversion of x and y component.\n\n",ADJOINT_TYPE);}
        if (ADJOINT_TYPE==2){
            fprintf(fp," ADJOINT_TYPE=%d: Inversion of y component.\n\n",ADJOINT_TYPE);}
        if (ADJOINT_TYPE==3){
            fprintf(fp," ADJOINT_TYPE=%d: Inversion of x component.\n\n",ADJOINT_TYPE);}
        if (ADJOINT_TYPE==4){
            fprintf(fp," ADJOINT_TYPE=%d: Inversion of pressure component.\n\n",ADJOINT_TYPE);}
        
        if (VELOCITY==1){
            fprintf(fp," VELOCITY=%d: Minimization of misfit in velocity seismograms.\n\n",VELOCITY);}
        
        fprintf(fp," Shots used for step length estimation (in total %d testshots are used):\n",NO_OF_TESTSHOTS);
        fprintf(fp,"\t TESTSHOT_START = %d \n",TESTSHOT_START);
        fprintf(fp,"\t TESTSHOT_END = %d \n",TESTSHOT_END);
        fprintf(fp,"\t TESTSHOT_INCR = %d \n\n",TESTSHOT_INCR);
        
        fprintf(fp," Cosine Taper used : \n ");
        fprintf(fp,"\t%d\n",TAPER);
        
        fprintf(fp," Log file for misfit in each iteration step: \n ");
        fprintf(fp,"\t%s \n\n",MISFIT_LOG_FILE);
        
        fprintf(fp," Output of inverted models: \n ");
        fprintf(fp,"\t%s (nfstart=%d, nf=%d)\n\n",INV_MODELFILE,nfstart,nf);
        
        fprintf(fp," Output of jacobian: \n ");
        fprintf(fp,"\t%s (nfstart_jac=%d, nf_jac=%d)\n\n\n",JACOBIAN,nfstart_jac,nf_jac);
        
        fprintf(fp,"\n");
        fprintf(fp," Density is inverted from iteration step %d on.\n",INV_RHO_ITER);
        
        fprintf(fp,"\n");
        fprintf(fp," Vp is inverted from iteration step %d on.\n",INV_VP_ITER);
        
        if(!ACOUSTIC){
            fprintf(fp,"\n");
            fprintf(fp," Vs is inverted from iteration step %d on.\n\n\n",INV_VS_ITER);
        }
        
        fprintf(fp,"\n");
        fprintf(fp," Minimum Vp/Vs-ratio is set to %4.2f.\n",VP_VS_RATIO);
        if(VP_VS_RATIO<1)fprintf(fp," which means that it is disregarded. \n\n\n");
        
        if(S==1){
            fprintf(fp,"\n\n");
            fprintf(fp," Limited update of Vs in reference to the starting model is set to %4.2f %%.\n",S_VS);
            fprintf(fp," Limited update of Vp in reference to the starting model is set to %4.2f %%.\n",S_VP);
            fprintf(fp," Limited update of Rho in reference to the starting model is set to %4.2f %%.\n\n\n",S_RHO);
        }
        
        fprintf(fp," --------------- Gradient tapering -------------------\n");
        if (SWS_TAPER_GRAD_VERT==1){
            fprintf(fp," SWS_TAPER_GRAD_VERT=%d: Vertical taper applied.\n",SWS_TAPER_GRAD_VERT);
            fprintf(fp," (GRADT1=%d, GRADT2=%d, GRADT3=%d, GRADT4=%d)\n\n",GRADT1,GRADT2,GRADT3,GRADT4);}
        else	fprintf(fp," SWS_TAPER_GRAD_VERT=%d: No vertical taper applied.\n\n",SWS_TAPER_GRAD_VERT);
        
        if (SWS_TAPER_GRAD_HOR==1){
            fprintf(fp," SWS_TAPER_GRAD_HOR=%d: Horizontal taper applied.\n",SWS_TAPER_GRAD_HOR);
            fprintf(fp," (GRADT1=%d, GRADT2=%d, GRADT3=%d, GRADT4=%d)\n\n",GRADT1,GRADT2,GRADT3,GRADT4);}
        else	fprintf(fp," SWS_TAPER_GRAD_HOR=%d: No horizontal taper applied.\n\n",SWS_TAPER_GRAD_HOR);
        
        if (SWS_TAPER_GRAD_SOURCES==1){
            fprintf(fp," SWS_TAPER_GRAD_SOURCES=%d: Taper around the sources.\n",SWS_TAPER_GRAD_SOURCES);
            fprintf(fp," (SRTSHAPE=%d, SRTRADIUS=%f, FILTSIZE=%d)\n\n",SRTSHAPE,SRTRADIUS,FILTSIZE);}
        else	fprintf(fp," SWS_TAPER_GRAD_SOURCES=%d: No taper around the sources applied.\n\n",SWS_TAPER_GRAD_SOURCES);
        
        if (SWS_TAPER_CIRCULAR_PER_SHOT==1){
            fprintf(fp," SWS_TAPER_CIRCULAR_PER_SHOT=%d: Taper around the source for each shot.\n",SWS_TAPER_CIRCULAR_PER_SHOT);
            fprintf(fp," (SRTSHAPE=%d, SRTRADIUS=%f, FILTSIZE=%d)\n\n",SRTSHAPE,SRTRADIUS,FILTSIZE);}
        else	fprintf(fp," SWS_TAPER_CIRCULAR_PER_SHOT=%d: No taper around the sources applied.\n\n",SWS_TAPER_CIRCULAR_PER_SHOT);
        
        if (SWS_TAPER_FILE==1){
            fprintf(fp," SWS_TAPER_FILE=%d: Taper files taper.bin, taper_u.bin taper_rho.bin are read in and applied to the gradients.\n",SWS_TAPER_FILE);}
        else	fprintf(fp," SWS_TAPER_FILE=%d: No taper files are applied to the summed gradients.\n\n",SWS_TAPER_FILE);
        
        if (SWS_TAPER_FILE_PER_SHOT==1){
            fprintf(fp," SWS_TAPER_FILE_PER_SHOT=%d: Taper files for single shots are read in and applied to the gradients.\n",SWS_TAPER_FILE_PER_SHOT);
447 448 449
            fprintf(fp,"     File for vp or lambda gradients: %s.vp\n",TAPER_FILE_NAME);
            fprintf(fp,"     File for vs or mu gradients: %s.vs\n",TAPER_FILE_NAME);
            fprintf(fp,"     File for rho gradients: %s.rho\n",TAPER_FILE_NAME);}
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
        else	fprintf(fp," SWS_TAPER_FILE_PER_SHOT=%d: No taper files are applied to the gradients before summation.\n\n",SWS_TAPER_FILE_PER_SHOT);
        
        fprintf(fp,"\n");
        fprintf(fp," Smoothing (spatial filtering) of the gradients: \n ");
        if(SPATFILTER==1){
            fprintf(fp," \tSPATFILTER=%d: Gradients are smoothed.\n",SPATFILTER);
            fprintf(fp," \t(SPAT_FILT_SIZE=%d, SPAT_FILT_1=%d, SPAT_FILT_ITER=%d)\n",SPAT_FILT_SIZE,SPAT_FILT_1,SPAT_FILT_ITER);}
        else 	fprintf(fp," \tSPATFILTER=%d: Gradients are not smoothed.\n",SPATFILTER);
        
        fprintf(fp,"\n\n");
        fprintf(fp," --------------- Gradient smoothing with 2D-Gaussian filter -------------------\n");
        if(GRAD_FILTER==1){
            if(GRAD_FILT_WAVELENGTH==0)fprintf(fp," GRAD_FILTER=%d: Gradients are filtered.(FILT_SIZE_GRAD=%d)\n",GRAD_FILTER,FILT_SIZE_GRAD);
            if(GRAD_FILT_WAVELENGTH==1)fprintf(fp," GRAD_FILTER=%d: FILT_SIZE_GRAD is ignored. Gradients are filtered with a wavelength dependent filter size. Weighting factor A = %4.2f \n",GRAD_FILTER,A);}
        else 	fprintf(fp," GRAD_FILTER=%d: Jacobians are not filtered.\n",GRAD_FILTER);
        
        fprintf(fp,"\n\n");
        fprintf(fp," --------------- Limits of model parameters -------------------\n");
        fprintf(fp," VPLOWERLIM = %f \t\t VPUPPERLIM = %f \n",VPLOWERLIM,VPUPPERLIM);
        fprintf(fp," VSLOWERLIM = %f \t\t VSUPPERLIM = %f \n",VSLOWERLIM,VSUPPERLIM);
        fprintf(fp," RHOLOWERLIM = %f \t RHOUPPERLIM = %f \n",RHOLOWERLIM,RHOUPPERLIM);
        
        
        fprintf(fp,"\n\n");
        fprintf(fp," --------------- Calculation of the diagonal elements of the approximate Hessian matrix -------------------\n");
        switch(GRAD_METHOD){
            case 1:
                fprintf(fp," GRAD_METHOD=%d: PCG\n",GRAD_METHOD);
                break;
            case 2:
                fprintf(fp," GRAD_METHOD=%d: LBFGS\n",GRAD_METHOD);
                break;
            case 0: break;	/* only forward modeling is applied */
            default:
Florian Wittkamp's avatar
Florian Wittkamp committed
484
                declare_error(" Sorry, incorrect value for GRAD_METHOD ! \n");
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        }
        
        
        fprintf(fp,"\n\n");
        fprintf(fp," --------------- Model smoothing -------------------\n");
        if(MODEL_FILTER==1){
            fprintf(fp," MODEL_FILTER=%d: vp and vs models are filtered after each iteration step.\n",MODEL_FILTER);
            fprintf(fp," (FILT_SIZE=%d)\n",FILT_SIZE);}
        else 	fprintf(fp," MODEL_FILTER=%d: vp and vs models are not filtered after each iteration step.\n",MODEL_FILTER);
        
        
        fprintf(fp,"\n\n");
        fprintf(fp," --------------- Inversion of the source time function -------------------\n");
        if(INV_STF==1){
            fprintf(fp," INV_STF=%d: Source time function will be inverted.\n",INV_STF);
            fprintf(fp," (PARA=%s, N_STF=%d, N_STF_START=%d)\n",PARA,N_STF,N_STF_START);}
        else 	fprintf(fp," INV_STF=%d: No inversion of the source time function.\n",INV_STF);
        
        
        
        fprintf(fp,"\n\n");
        
        fprintf(fp," --------------- Trace kill STF -------------------\n");
        if (TRKILL_STF){
            fprintf(fp," TRKILL_STF=%d: Trace kill STF is applied \n",TRKILL_STF);
            fprintf(fp," Reading trace kill STF matrix from file: %s \n\n",TRKILL_FILE_STF);}
        else fprintf(fp," TRKILL_STF=%d: No trace kill STF is applied \n",TRKILL_STF);
        
        
        
        fprintf(fp,"\n\n");
        fprintf(fp," --------------- Frequency filtering -------------------\n");
        if (TIME_FILT){
            if(TIME_FILT==1){
Tilman Steinweg's avatar
Tilman Steinweg committed
519
                fprintf(fp," TIME_FILT=%d: Time domain filtering is applied \n",TIME_FILT);
520 521
                fprintf(fp," Starting at frequencies of %.2f Hz\n",F_LOW_PASS_START);
                fprintf(fp," Increasing the bandwidth up to %.2f Hz in steps of %.2f Hz\n",F_LOW_PASS_END,F_LOW_PASS_INCR);
522 523
            }
            if(TIME_FILT==2){
Tilman Steinweg's avatar
Tilman Steinweg committed
524
                fprintf(fp," TIME_FILT=%d: Time domain filtering is applied \n Frequencies will be read from file: %s\n",TIME_FILT,FREQ_FILE);}
525 526
            fprintf(fp," Order of lowpass filter is:\t%d\n",ORDER);
            if ((ORDER%2)!=0){
Florian Wittkamp's avatar
Florian Wittkamp committed
527
                declare_error(" Order of time domain filter must be an even number! \n");}
528 529 530
        } else {
            fprintf(fp," TIME_FILT=%d: No time domain filtering is applied.\n",TIME_FILT);
        }
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
        
        
        fprintf(fp,"\n\n");
        fprintf(fp," --------------- Trace kill -------------------\n");
        if (TRKILL){
            fprintf(fp," TRKILL=%d: Trace kill is applied \n",TRKILL);
            if(TRKILL_OFFSET) {
                fprintf(fp," Traces with offset between %f m and %f m are killed.\n\n",TRKILL_OFFSET_LOWER,TRKILL_OFFSET_UPPER);
            } else {
                fprintf(fp," Reading trace kill matrix from file: %s \n\n",TRKILL_FILE);
            }
        } else {
            fprintf(fp," TRKILL=%d: No trace kill is applied \n",TRKILL);
        }
        
        
        
        fprintf(fp,"\n\n");
549
        fprintf(fp," --------------- Time windowing and damping -------------------\n");
550
        if (TIMEWIN){
551
            fprintf(fp," TIMEWIN=%d: Time windowing and damping is applied \n",TIMEWIN);
552 553 554 555
            fprintf(fp," Reading picked times from files: %s \n",PICKS_FILE);
            fprintf(fp," length of window after pick in s is: %f \n",TWLENGTH_PLUS);
            fprintf(fp," length of window befor pick in s is: %f \n",TWLENGTH_MINUS);
            fprintf(fp," gamma is : %f \n\n",GAMMA);}
556
        else fprintf(fp," TIMEWIN=%d: No time windowing and damping is applied \n",TIMEWIN);
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
        
        
        
        fprintf(fp,"\n\n");
        fprintf(fp," --------------- Trace normalization -------------------\n");
        if (NORMALIZE){
            fprintf(fp," NORMALIZE=%d: The measured and synthetic seismograms will be normalized.\n",NORMALIZE);
            fprintf(fp," before calculating the residuals. \n\n");}
        else fprintf(fp," NORMALIZE=%d: No normalization of measured and synthetic seismograms.\n",NORMALIZE);
        
        
        fprintf(fp,"\n\n");
        fprintf(fp," --------------- Gradient calculation -------------------\n");
        fprintf(fp," Used normed:\n");
        fprintf(fp,"   LNORM==1 corresponds to L1 Norm\n");
        fprintf(fp,"   LNORM==2 corresponds to L2 Norm\n");
        fprintf(fp,"   LNORM==3 corresponds to Cauchy\n");
        fprintf(fp,"   LNORM==4 corresponds to SECH\n");
        fprintf(fp,"   LNORM==5 corresponds to global correlation\n");
        fprintf(fp,"   LNORM==7 corresponds to normalized L2 Norm (each trace is normalized by its RMS value)\n");
        fprintf(fp,"   LNORM==8 corresponds to enveloped-based Norm\n\n");
        fprintf(fp," Switched LNORM=%d\n\n",LNORM);
        fprintf(fp,"   WATERLEVEL_LNORM8 is %e\n\n",WATERLEVEL_LNORM8);
        
        fprintf(fp," Every %d time sample is used for the calculation of the gradients.\n\n",DTINV);
        
        
        fprintf(fp,"\n\n");
        fprintf(fp," --------------- Step length estimation -------------------\n");
        fprintf(fp," EPS_SCALE = %f\n",EPS_SCALE);
        fprintf(fp," STEPMAX = %d\n",STEPMAX);
        fprintf(fp," SCALEFAC = %f\n",SCALEFAC);
        
        
        fprintf(fp,"\n\n");
        fprintf(fp," --------------- termination of the program -------------------\n");
        fprintf(fp," Misfit change during the last two iterations is smaller than %f percent.\n\n",(PRO*100.0));
        
        fprintf(fp,"\n\n");
        fprintf(fp," --------------- minimum number of iteration per frequency -------------------\n");
        fprintf(fp," MIN_ITER = %d \n\n",MIN_ITER);
    }
    
    fprintf(fp,"\n");
    fprintf(fp," **************************************************************\n");
    fprintf(fp,"\n");
Tilman Steinweg's avatar
Tilman Steinweg committed
603
}