ifos3d.inp 8.63 KB
Newer Older
1 2 3 4
#-----------------------------------------------------------------
#                  PARAMETER FILE FOR IFOS3D
#-----------------------------------------------------------------
#
5
# Note that y denotes the vertical direction !
6 7 8 9 10 11 12 13 14 15 16 17
#
#-----------------------------------------------------------------------------------
#------------------------ MODELING PARAMETERS --------------------------------------
#-----------------------------------------------------------------------------------
#
#-------------- Domain Decomposition -----------------------------
number_of_processors_in_x-direction_(NPROCX) = 2
number_of_processors_in_y-direction_(NPROCY) = 2
number_of_processors_in_z-direction_(NPROCZ) = 2
#
#-------------------- 3-D Grid -----------------------------------
number_of_gridpoints_in_x-direction_(NX) = 160
18 19
number_of_gridpoints_in_y-direction_(NY) = 184 
number_of_gridpoints_in_z-direction_(NZ) = 160
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
distance_between_gridpoints(in_m)_in_x-direction_(DX) = 0.8	
distance_between_gridpoints(in_m)_in_y-direction_(DY) = 0.8
distance_between_gridpoints(in_m)_in_z-direction_(DZ) = 0.8
#
# Caution: first gridpoint is not at {0.0,0.0,0.0} but at {dx,dy,dz}!
#
#------------------- Order of FD Operator -----------------------
order_of_spatial_fd_operators_(FDORDER) = 4
# possible values are 2, 4, 6, 8, 10, 12
fd_coefficients_(Taylor=1;Holberg=2)_(FDCOEFF) = 2
#
#-------------------Time Stepping -------------------------------
time_of_wave_propagation_(in_sec)_(TIME) = 0.06
timestep_(in_seconds)_(DT) = 5.0e-5
#
#--------------------Source---------------------------------------
# Shape_of_source-signal:
37
(ricker=1;fumue=2;from_SIGNAL_FILE=3;SIN**3=4;deltapulse=5)_(SOURCE_SHAPE) = 4
38
point_source_(explosive=1;force_in_x=2;in_z=3;in_y=4;custom=5)_(SOURCE_TYPE) = 4
39
# If SOURCE_TYPE <5 the following two lines are ignored
40 41 42
force_angle_between_x_y_(in_degree)_(ALPHA) = 45.0
force_angle_between_x_z_(in_degree)_(BETA) =  45.0
# Plane wave (PW) excitation,if PLANE_WAVE_DEPTH>0, SRCREC is treated as 0
Tilman Steinweg's avatar
Tilman Steinweg committed
43
depth_of_PW_excitation_(no<=0)_(in_meter)_(PLANE_WAVE_DEPTH) = 0.0
44 45
dip_of_PW_from_vertical_(in_degrees)_(PHI) =0.0
duration_of_source-signal_PW_(in_seconds)_(TS) = 0.0033
46
# External signal input instead of SOURCE_SHAPE
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
SIGNAL_FILE = ?
read_source_positions_from_SOURCE_FILE_(yes=1)_(SRCREC) = 1
SOURCE_FILE = ./sources/sources_toy.dat  
run_multiple_shots_defined_in_SOURCE_FILE_(yes=1)_(RUN_MULTIPLE_SHOTS) = 1
#--------------------- Model (Input) -------------------------------------
read_model_from_MFILE(yes=1)(READMOD) = 0
MFILE = model/toy
#
#---------------------Q-approximation-----------------------------
Number_of_relaxation_mechanisms_(L) = 0
# (L=0: elastic, FWI only tested for L=0)
L_Relaxation_frequencies_(FL) = 1000.0 
Tau_value_for_entire_model_(TAU) = 0.000001
#
#----------------------Free Surface-------------------------------
free_surface_(yes=1)(FREE_SURF) = 0
#
#--------------------Absorbing Boundary---------------------------
# exponential damping applied
type_of_boundary_condition_(ABS_TYPE)_(PML=1/ABS=2) = 1
width_of_absorbing_frame_(in_grid_points)_(No<=0)_(FW) = 10
percentage_of_amplitude_decay_at_outer_edge_(DAMPING) = 8.0
# parameter for PML:
Dominant_frequency_(in_Hz)_(FPML) = 200.0
P_wave_velocity_near_the_grid_boundary(in_m/s)_(VPPML) = 6200.0
# apply_periodic_boundary_condition_at_edges_(BOUNDARY):
(no=0)_(left/right/front/back=1) = 0
#
#----------------------Snapshots----------------------------------
output_of_snapshots_(SNAP)(yes>0) = 0
# output of particle velocities: SNAP=1
# output of pressure field: SNAP=2
# output of curl and divergence energy: SNAP=3
# output of both particle velocities and energy : SNAP=4
first_snapshot_(in_sec)_(TSNAP1) = 0.01
last_snapshot_(in_sec)_(TSNAP2) = 0.24
increment_(in_sec)_(TSNAPINC) = 0.0075
84
# Note that y denotes the vertical direction !
85 86 87 88 89 90 91 92 93
increment_x-direction_(IDX) = 1
increment_y-direction_(IDY) = 1
increment_z-direction_(IDZ) = 1
data-format_(SNAP_FORMAT)(ASCII(2);BINARY(3)) = 4
basic_filename_(SNAP_FILE) = ./snap/back
#output will look like SNAP_FILE.bin.z.000
#if SNAP = 1,2 the following line is ignored
(SNAP_PLANE) = 1
#output of snapshots as energy wihout sign SNAP_PLANE=1
94 95 96
#energy with sign true for x-y-plane SNAP_PLANE=2
#energy with sign true for x-z-plane SNAP_PLANE=3
#energy with sign true for z-y-plane SNAP_PLANE=4
97 98 99 100 101 102 103 104 105
#
#----------------------Receiver-----------------------------------
output_of_seismograms_(SEISMO) = 1
# SEISMO=0: no seismograms
# SEISMO=1: particle-velocities
# SEISMO=2: pressure (hydrophones)
# SEISMO=3: curl and div
# SEISMO=4: everything
# Warning: "curl" is not really curl in 3D
106 107 108 109
read_receiver_positions_(READREC) = 2
# receiver line READREC=0
# from_file READREC=1
# rec array READREC=2
110 111
REC_FILE = ./receiver/receiver.dat
reference_point_for_receiver_coordinate_system_(REFREC) = 0.0 , 0.0 , 0.0
112
# if READREC=1 the following receiver options are ignored 
113
# Note that y denotes the vertical direction !
114 115
#
# --------------------Receiver line -------------------------------
116 117 118 119 120 121 122 123 124 125 126
position_of_first_receiver_(in_m)_(XREC1,YREC1,ZREC1) =  90.0 , 90.0 , 90.0
position_of_last_receiver_(in_m)_(XREC2,YREC2,ZREC2)  =  90.0 , 90.0 , 90.0
distance_between_two_adjacent_receivers_(in_gridpoints)_(NGEOPH) = 1
# (Caution: receivers outside the grid may cause surprising results!)
#
#-------------------- Receiver array -------------------------------
# parameters for horizontal plane of receivers
number_of_planes_(no<=0)_(REC_ARRAY) = 1
depth_of_first_(upper)_plane_(in_m)_(REC_ARRAY_DEPTH) = 24.0
vertical_distance_between_planes_(in_m)_(REC_ARRAY_DIST) = 30.0 
distance_between_receivers_in_x-direction_(in_gridpoints)_(DRX) = 10
127
distance_between_receivers_in_y-direction_(in_gridpoints)_(DRZ) = 10
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
#
#--------------------  Seismogram Output-----------------------------
samplingrate_and_timelag_(in_timesteps!)_(NDT,NDTSHIFT) = 1 , 0
# write every (ndt)th sample, leaving ndtshift samples at the beginning out
# default: ndt=1 and ndtshift=0. (ndt=0 is set to ndt=1, ndt<0 are set to -ndt.)
#
data-format_(SEIS_FORMAT[6]) = 1
#  0: SEG-Y (ASCII-text/native 4-byte-floats (IEEE on PC)/little endian on PC)
#  1: SU (native 4-byte-floats (IEEE on PC)/little endian on PC)
#  2: TEXTUAL (native ASCII)
#  3: BINARY (IEEE-4-byte-floats on PC/little endian on PC)
#  4: SEG-Y (ASCII-text/native 4-byte-floats (IEEE on PC)/little endian on PC)
#  5: SEG-Y (ASCII-text/IBM-4-byte-floats on PC/big endian on PC) 
#
basic_filename_(SEIS_FILE) = ./su/cal_toy
#
#------------------------ Method --------------------------------
#
method_(METHOD) = 0
# 0: only forward simulation
# 1: conjugate_gradient_FWI
#
#-----------------------------------------------------------------------------------
#------------------------ INVERSION PARAMETERS --------------------------------------
#-----------------------------------------------------------------------------------
#
#-------------------------In- and Output Files--------------------------------------
155
gradient_filename_(GRAD_FILE) = ./grad/toy_grad
156 157 158 159
model_output_filename_(MOD_OUT_FILE) = ./model/toy
observed_data_fileneame_(SEIS_OBS_FILE) = ./su_obs/obs_toy
external_or_internal_observed_data_(EXTOBS) = 0
inversion_parameter_file_(INV_FILE) = ./in_and_out/workflow_toy.dat
160
hessian_file_(HESS_FILE) = ./hess/toy_hess
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#
#-------------------------General---------------------------------------------------
minimum/maximum_iteration_number_(>0)_(ITMIN,ITMAX) = 1 , 80
filtering_(yes=1/no=0)_(FILT) = 1
maximum_number_frequencies_per_iteration_(NFMAX) = 5
number_of_timestep_per_period_used_for_inversion_(TAST) = 100
average_model_parameter_(VP0,VS0,RHO0) = 6200.0, 3600.0, 2800.0
# velocities  in m/s, density in kg/m³
parameter_class_weighting_factors_for_vp/vs/rho_(WEIGHT) = 1.0, 1.0, 0.0
# choose from 1.0 (full update) to 0.0 (no update)
#
#------------------------Steplength estimation----------------------------------------
number_of_shots_used_for_steplength_estimation_(NSHOTS_STEP) = 4
initial_test_steplength_(TESTSTEP) = 0.02
#
#------------------------Gradient preconditioning-------------------------------------
Type_of_preconditioning_(DAMPTYPE) = 2
# 0: no damping
# 1: Circular taper around receivers
# 2: Cicular taper around sources and receivers
# 3: Tapering of source and receiver planes
#
#------------------------Hessian ----------------------------------------
Apply_Hessian_(yes=1/no=0)_(HESS) = 0
Read_Hessian_from_file_(READ_HESS) = 0
Part_of_receivers_used_for_Hessian_(REC_HESS) = 1 
#(Each REC_HESS Receiver is used to calculate the Hessian, not yet implemented)
Water_level_Hessian_for_vp/vs/rho_(WATER_HESS) = 0.0192, 0.0192, 1.0e-14
# 
#------------------------L-BFGS ----------------------------------------
Apply_L_BFGS_(LBFGS) = 0
192 193
Number_of_inverted_parameters_(NUMPAR) = 2
Number_iterations_used_for_LBFGS_(BFGSNUM) = 5