ifos3d.inp 8.63 KB
Newer Older
1
2
3
4
#-----------------------------------------------------------------
#                  PARAMETER FILE FOR IFOS3D
#-----------------------------------------------------------------
#
5
# Note that y denotes the vertical direction !
6
7
8
9
10
11
12
13
14
15
16
17
#
#-----------------------------------------------------------------------------------
#------------------------ MODELING PARAMETERS --------------------------------------
#-----------------------------------------------------------------------------------
#
#-------------- Domain Decomposition -----------------------------
number_of_processors_in_x-direction_(NPROCX) = 2
number_of_processors_in_y-direction_(NPROCY) = 2
number_of_processors_in_z-direction_(NPROCZ) = 2
#
#-------------------- 3-D Grid -----------------------------------
number_of_gridpoints_in_x-direction_(NX) = 160
18
19
number_of_gridpoints_in_y-direction_(NY) = 184 
number_of_gridpoints_in_z-direction_(NZ) = 160
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
distance_between_gridpoints(in_m)_in_x-direction_(DX) = 0.8	
distance_between_gridpoints(in_m)_in_y-direction_(DY) = 0.8
distance_between_gridpoints(in_m)_in_z-direction_(DZ) = 0.8
#
# Caution: first gridpoint is not at {0.0,0.0,0.0} but at {dx,dy,dz}!
#
#------------------- Order of FD Operator -----------------------
order_of_spatial_fd_operators_(FDORDER) = 4
# possible values are 2, 4, 6, 8, 10, 12
fd_coefficients_(Taylor=1;Holberg=2)_(FDCOEFF) = 2
#
#-------------------Time Stepping -------------------------------
time_of_wave_propagation_(in_sec)_(TIME) = 0.06
timestep_(in_seconds)_(DT) = 5.0e-5
#
#--------------------Source---------------------------------------
# Shape_of_source-signal:
37
(ricker=1;fumue=2;from_SIGNAL_FILE=3;SIN**3=4;deltapulse=5)_(SOURCE_SHAPE) = 4
38
point_source_(explosive=1;force_in_x=2;in_z=3;in_y=4;custom=5)_(SOURCE_TYPE) = 4
39
# If SOURCE_TYPE <5 the following two lines are ignored
40
41
42
force_angle_between_x_y_(in_degree)_(ALPHA) = 45.0
force_angle_between_x_z_(in_degree)_(BETA) =  45.0
# Plane wave (PW) excitation,if PLANE_WAVE_DEPTH>0, SRCREC is treated as 0
Tilman Steinweg's avatar
Tilman Steinweg committed
43
depth_of_PW_excitation_(no<=0)_(in_meter)_(PLANE_WAVE_DEPTH) = 0.0
44
45
dip_of_PW_from_vertical_(in_degrees)_(PHI) =0.0
duration_of_source-signal_PW_(in_seconds)_(TS) = 0.0033
46
# External signal input instead of SOURCE_SHAPE
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
SIGNAL_FILE = ?
read_source_positions_from_SOURCE_FILE_(yes=1)_(SRCREC) = 1
SOURCE_FILE = ./sources/sources_toy.dat  
run_multiple_shots_defined_in_SOURCE_FILE_(yes=1)_(RUN_MULTIPLE_SHOTS) = 1
#--------------------- Model (Input) -------------------------------------
read_model_from_MFILE(yes=1)(READMOD) = 0
MFILE = model/toy
#
#---------------------Q-approximation-----------------------------
Number_of_relaxation_mechanisms_(L) = 0
# (L=0: elastic, FWI only tested for L=0)
L_Relaxation_frequencies_(FL) = 1000.0 
Tau_value_for_entire_model_(TAU) = 0.000001
#
#----------------------Free Surface-------------------------------
free_surface_(yes=1)(FREE_SURF) = 0
#
#--------------------Absorbing Boundary---------------------------
# exponential damping applied
type_of_boundary_condition_(ABS_TYPE)_(PML=1/ABS=2) = 1
width_of_absorbing_frame_(in_grid_points)_(No<=0)_(FW) = 10
percentage_of_amplitude_decay_at_outer_edge_(DAMPING) = 8.0
# parameter for PML:
Dominant_frequency_(in_Hz)_(FPML) = 200.0
P_wave_velocity_near_the_grid_boundary(in_m/s)_(VPPML) = 6200.0
# apply_periodic_boundary_condition_at_edges_(BOUNDARY):
(no=0)_(left/right/front/back=1) = 0
#
#----------------------Snapshots----------------------------------
output_of_snapshots_(SNAP)(yes>0) = 0
# output of particle velocities: SNAP=1
# output of pressure field: SNAP=2
# output of curl and divergence energy: SNAP=3
# output of both particle velocities and energy : SNAP=4
first_snapshot_(in_sec)_(TSNAP1) = 0.01
last_snapshot_(in_sec)_(TSNAP2) = 0.24
increment_(in_sec)_(TSNAPINC) = 0.0075
84
# Note that y denotes the vertical direction !
85
86
87
88
89
90
91
92
93
increment_x-direction_(IDX) = 1
increment_y-direction_(IDY) = 1
increment_z-direction_(IDZ) = 1
data-format_(SNAP_FORMAT)(ASCII(2);BINARY(3)) = 4
basic_filename_(SNAP_FILE) = ./snap/back
#output will look like SNAP_FILE.bin.z.000
#if SNAP = 1,2 the following line is ignored
(SNAP_PLANE) = 1
#output of snapshots as energy wihout sign SNAP_PLANE=1
94
95
96
#energy with sign true for x-y-plane SNAP_PLANE=2
#energy with sign true for x-z-plane SNAP_PLANE=3
#energy with sign true for z-y-plane SNAP_PLANE=4
97
98
99
100
101
102
103
104
105
#
#----------------------Receiver-----------------------------------
output_of_seismograms_(SEISMO) = 1
# SEISMO=0: no seismograms
# SEISMO=1: particle-velocities
# SEISMO=2: pressure (hydrophones)
# SEISMO=3: curl and div
# SEISMO=4: everything
# Warning: "curl" is not really curl in 3D
106
107
108
109
read_receiver_positions_(READREC) = 2
# receiver line READREC=0
# from_file READREC=1
# rec array READREC=2
110
111
REC_FILE = ./receiver/receiver.dat
reference_point_for_receiver_coordinate_system_(REFREC) = 0.0 , 0.0 , 0.0
112
# if READREC=1 the following receiver options are ignored 
113
# Note that y denotes the vertical direction !
114
115
#
# --------------------Receiver line -------------------------------
116
117
118
119
120
121
122
123
124
125
126
position_of_first_receiver_(in_m)_(XREC1,YREC1,ZREC1) =  90.0 , 90.0 , 90.0
position_of_last_receiver_(in_m)_(XREC2,YREC2,ZREC2)  =  90.0 , 90.0 , 90.0
distance_between_two_adjacent_receivers_(in_gridpoints)_(NGEOPH) = 1
# (Caution: receivers outside the grid may cause surprising results!)
#
#-------------------- Receiver array -------------------------------
# parameters for horizontal plane of receivers
number_of_planes_(no<=0)_(REC_ARRAY) = 1
depth_of_first_(upper)_plane_(in_m)_(REC_ARRAY_DEPTH) = 24.0
vertical_distance_between_planes_(in_m)_(REC_ARRAY_DIST) = 30.0 
distance_between_receivers_in_x-direction_(in_gridpoints)_(DRX) = 10
127
distance_between_receivers_in_y-direction_(in_gridpoints)_(DRZ) = 10
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#
#--------------------  Seismogram Output-----------------------------
samplingrate_and_timelag_(in_timesteps!)_(NDT,NDTSHIFT) = 1 , 0
# write every (ndt)th sample, leaving ndtshift samples at the beginning out
# default: ndt=1 and ndtshift=0. (ndt=0 is set to ndt=1, ndt<0 are set to -ndt.)
#
data-format_(SEIS_FORMAT[6]) = 1
#  0: SEG-Y (ASCII-text/native 4-byte-floats (IEEE on PC)/little endian on PC)
#  1: SU (native 4-byte-floats (IEEE on PC)/little endian on PC)
#  2: TEXTUAL (native ASCII)
#  3: BINARY (IEEE-4-byte-floats on PC/little endian on PC)
#  4: SEG-Y (ASCII-text/native 4-byte-floats (IEEE on PC)/little endian on PC)
#  5: SEG-Y (ASCII-text/IBM-4-byte-floats on PC/big endian on PC) 
#
basic_filename_(SEIS_FILE) = ./su/cal_toy
#
#------------------------ Method --------------------------------
#
method_(METHOD) = 0
# 0: only forward simulation
# 1: conjugate_gradient_FWI
#
#-----------------------------------------------------------------------------------
#------------------------ INVERSION PARAMETERS --------------------------------------
#-----------------------------------------------------------------------------------
#
#-------------------------In- and Output Files--------------------------------------
155
gradient_filename_(GRAD_FILE) = ./grad/toy_grad
156
157
158
159
model_output_filename_(MOD_OUT_FILE) = ./model/toy
observed_data_fileneame_(SEIS_OBS_FILE) = ./su_obs/obs_toy
external_or_internal_observed_data_(EXTOBS) = 0
inversion_parameter_file_(INV_FILE) = ./in_and_out/workflow_toy.dat
160
hessian_file_(HESS_FILE) = ./hess/toy_hess
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#
#-------------------------General---------------------------------------------------
minimum/maximum_iteration_number_(>0)_(ITMIN,ITMAX) = 1 , 80
filtering_(yes=1/no=0)_(FILT) = 1
maximum_number_frequencies_per_iteration_(NFMAX) = 5
number_of_timestep_per_period_used_for_inversion_(TAST) = 100
average_model_parameter_(VP0,VS0,RHO0) = 6200.0, 3600.0, 2800.0
# velocities  in m/s, density in kg/m³
parameter_class_weighting_factors_for_vp/vs/rho_(WEIGHT) = 1.0, 1.0, 0.0
# choose from 1.0 (full update) to 0.0 (no update)
#
#------------------------Steplength estimation----------------------------------------
number_of_shots_used_for_steplength_estimation_(NSHOTS_STEP) = 4
initial_test_steplength_(TESTSTEP) = 0.02
#
#------------------------Gradient preconditioning-------------------------------------
Type_of_preconditioning_(DAMPTYPE) = 2
# 0: no damping
# 1: Circular taper around receivers
# 2: Cicular taper around sources and receivers
# 3: Tapering of source and receiver planes
#
#------------------------Hessian ----------------------------------------
Apply_Hessian_(yes=1/no=0)_(HESS) = 0
Read_Hessian_from_file_(READ_HESS) = 0
Part_of_receivers_used_for_Hessian_(REC_HESS) = 1 
#(Each REC_HESS Receiver is used to calculate the Hessian, not yet implemented)
Water_level_Hessian_for_vp/vs/rho_(WATER_HESS) = 0.0192, 0.0192, 1.0e-14
# 
#------------------------L-BFGS ----------------------------------------
Apply_L_BFGS_(LBFGS) = 0
192
193
Number_of_inverted_parameters_(NUMPAR) = 2
Number_iterations_used_for_LBFGS_(BFGSNUM) = 5