tikz-3dplot.sty 31.7 KB
Newer Older
Tilman Steinweg's avatar
Tilman Steinweg committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
%% tikz-3dplot.sty
%% Copyright 2010 Jeffrey D. Hein
%
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in
%   http://www.latex-project.org/lppl.txt
% and version 1.3 or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
%
% This work has the LPPL maintenance status `maintained'.
% 
% The Current Maintainer of this work is Jeffrey D. Hein.
%
% This work consists of the files 3dplot.sty and 3dplot_documentation.tex

%Description
%-----------

%tikz-3dplot.sty - package for plotting three dimensional axes and coordinates in TikZ.  The user can specify orientation of the display, and also define rotated coordinate systems within the 3d display coordinate system.  

%Created 2009-11-07 by Jeff Hein.  Last updated: 2010-07-30
%----------------------------------------------------------

%Requirements
%------------
%This requires the tikz package.

%Update Notes
%------------

%see the documentation for update notes


\RequirePackage{pgf}
\RequirePackage{ifthen}

%Style definitions and includes
%------------------------------
\usetikzlibrary{calc,3d,arrows}

\tikzset{tdplot_screen_coords/.style={x={(1 cm,0 cm)},y={(0 cm, 1 cm)},z={(-1 cm, -1 cm)}}}%

\pgfmathsetmacro{\tdplotlowerphi}{0}
\pgfmathsetmacro{\tdplotupperphi}{360}
\pgfmathsetmacro{\tdplotlowertheta}{0}
\pgfmathsetmacro{\tdplotuppertheta}{180}
%\pgfmathsetmacro{\tdplotlinewidth}{.25pt}

%Commands
%--------

%\tdplotsinandcos{sin}{cos}{theta}
%determines the sin and cos of the specified angle (in degrees).
%#1: returns sin(#3)
%#2: returns cos(#3)
%#3: user-specified angle
\newcommand{\tdplotsinandcos}[3]{%
\pgfmathsetmacro{#1}{sin(#3)}%
\pgfmathsetmacro{#2}{cos(#3)}%
}

%\tdplotmult{result}{multiplicand}{multiplicator}
%determines the multiplication of specified values.
%#1: returns #2*#3
%#2: user-specified multiplicand
%#3: user-specified multiplicator
\newcommand{\tdplotmult}[3]{%
\pgfmathsetmacro{#1}{#2*#3}%
}

%\tdplotdiv{result}{dividend}{divisor}
%determines the division of specified values.
%#1: returns #2/#3
%TODO: handle divide by zero?
%#2: user-specified dividend
%#3: user-specified divisor
\newcommand{\tdplotdiv}[3]{%
\pgfmathsetmacro{#1}{#2/#3}%
}

%\tdplotcheckdiff{first value}{right value}{tolerance}{true code}{false code}
%compares two values to within specified tolerance.  Executes either the true code or false code depending on the comparison result.
%#1: value 1 to compare
%#2: value 2 to compare
%#3: tolerance
%#4: true condition result
%#5: false condition result
\newcommand{\tdplotcheckdiff}[5]{%
%
	%\pgfmathsubtract{#2}{#1}
	%\pgfmathparse{ abs(#2 - #1)}
	
	%\typeout{ #2, #1, \pgfmathresult, #3 }
	
	\pgfmathparse{ abs(#2 - #1)<#3 }
	
	%\typeout{ \pgfmathresult }
	\ifthenelse{\equal{\pgfmathresult}{1}}{#4}{#5}
}

%\tdplotsetdisplay{\theta_d}{\phi_d}
%generates the coordinate transformation for defining a TikZ 3d plot display coordinates.
%#1: user-specified \theta_d, defining the angle through which the system is rotated about the x-axis.  0 points the z-axis "out of the page", while 90 points the z-axis vertically upward on the page.
%#2: user-specified \phi_d, defining the angle through which the system is rotated about the z-axis.  0 points the x-axis to the right.
\newcommand{\tdplotsetmaincoords}[2]{%
%perform some trig for the display transformation
%
%
%store the user-specified angles for possible future use
\pgfmathsetmacro{\tdplotmaintheta}{#1}
\pgfmathsetmacro{\tdplotmainphi}{#2}
%
%
\tdplotcalctransformmainscreen
%
%now here is where the output is performed
\tikzset{tdplot_main_coords/.style={x={(\raarot cm,\rbarot cm)},y={(\rabrot cm, \rbbrot cm)},z={(\racrot cm, \rbcrot cm)}}}%
}


%This performs the calculation to define the main coordinate frame orientation style, and is also used to transform a coordinate from the main coordinate frame the the screen coordinate frame
\newcommand{\tdplotcalctransformmainscreen}{%
%
%TODO: choose less obvious macro names?  or look into scoping?
\tdplotsinandcos{\sintheta}{\costheta}{\tdplotmaintheta}%
\tdplotsinandcos{\sinphi}{\cosphi}{\tdplotmainphi}%
%
\tdplotmult{\stsp}{\sintheta}{\sinphi}%
\tdplotmult{\stcp}{\sintheta}{\cosphi}%
\tdplotmult{\ctsp}{\costheta}{\sinphi}%
\tdplotmult{\ctcp}{\costheta}{\cosphi}%
%
%determine rotation matrix elements for display transformation
\pgfmathsetmacro{\raarot}{\cosphi}%
\pgfmathsetmacro{\rabrot}{\sinphi}%
%NOTE: \rac is zero for this rotation, where z^c always points vertical on the page
\pgfmathsetmacro{\racrot}{0}%
\pgfmathsetmacro{\rbarot}{-\ctsp}%
\pgfmathsetmacro{\rbbrot}{\ctcp}%
\pgfmathsetmacro{\rbcrot}{\sintheta}%
%NOTE: third row of rotation matrix not needed for display since screen z is always flat on the page.  It is, however, needed when performing further transformations using the Euler transformation.
\pgfmathsetmacro{\rcarot}{\stsp}%
\pgfmathsetmacro{\rcbrot}{-\stcp}%
\pgfmathsetmacro{\rccrot}{\costheta}%
%
}




%determines the rotation matrix for transformation from the rotation coordinate frame to the main coordinate frame.  This also defines the rotation to produce the rotated coordinate frame.
\newcommand{\tdplotcalctransformrotmain}{%
%perform some trig for the Euler transformation
\tdplotsinandcos{\sinalpha}{\cosalpha}{\tdplotalpha} 
\tdplotsinandcos{\sinbeta}{\cosbeta}{\tdplotbeta}
\tdplotsinandcos{\singamma}{\cosgamma}{\tdplotgamma}
%
\tdplotmult{\sasb}{\sinalpha}{\sinbeta}
\tdplotmult{\sbsg}{\sinbeta}{\singamma}
\tdplotmult{\sasg}{\sinalpha}{\singamma}
\tdplotmult{\sasbsg}{\sasb}{\singamma}
%
\tdplotmult{\sacb}{\sinalpha}{\cosbeta}
\tdplotmult{\sacg}{\sinalpha}{\cosgamma}
\tdplotmult{\sbcg}{\sinbeta}{\cosgamma}
\tdplotmult{\sacbsg}{\sacb}{\singamma}
\tdplotmult{\sacbcg}{\sacb}{\cosgamma}
%
\tdplotmult{\casb}{\cosalpha}{\sinbeta}
\tdplotmult{\cacb}{\cosalpha}{\cosbeta}
\tdplotmult{\cacg}{\cosalpha}{\cosgamma}
\tdplotmult{\casg}{\cosalpha}{\singamma}
%
\tdplotmult{\cacbsg}{\cacb}{\singamma}
\tdplotmult{\cacbcg}{\cacb}{\cosgamma}
%
%determine rotation matrix elements for Euler transformation
\pgfmathsetmacro{\raaeul}{\cacbcg - \sasg}
\pgfmathsetmacro{\rabeul}{-\cacbsg - \sacg}
\pgfmathsetmacro{\raceul}{\casb}
\pgfmathsetmacro{\rbaeul}{\sacbcg + \casg}
\pgfmathsetmacro{\rbbeul}{-\sacbsg + \cacg}
\pgfmathsetmacro{\rbceul}{\sasb}
\pgfmathsetmacro{\rcaeul}{-\sbcg}
\pgfmathsetmacro{\rcbeul}{\sbsg}
\pgfmathsetmacro{\rcceul}{\cosbeta}
%
%DEBUG: display euler matrix elements
%\raaeul\ \rabeul\ \raceul
%
%\rbaeul\ \rbbeul\ \rbceul
%
%\rcaeul\ \rcbeul\ \rcceul
}


%determines the rotation matrix for transformation from the main coordinate frame to the rotated coordinate frame.
\newcommand{\tdplotcalctransformmainrot}{%
%perform some trig for the Euler transformation
\tdplotsinandcos{\sinalpha}{\cosalpha}{\tdplotalpha} 
\tdplotsinandcos{\sinbeta}{\cosbeta}{\tdplotbeta}
\tdplotsinandcos{\singamma}{\cosgamma}{\tdplotgamma}
%
\tdplotmult{\sasb}{\sinalpha}{\sinbeta}
\tdplotmult{\sbsg}{\sinbeta}{\singamma}
\tdplotmult{\sasg}{\sinalpha}{\singamma}
\tdplotmult{\sasbsg}{\sasb}{\singamma}
%
\tdplotmult{\sacb}{\sinalpha}{\cosbeta}
\tdplotmult{\sacg}{\sinalpha}{\cosgamma}
\tdplotmult{\sbcg}{\sinbeta}{\cosgamma}
\tdplotmult{\sacbsg}{\sacb}{\singamma}
\tdplotmult{\sacbcg}{\sacb}{\cosgamma}
%
\tdplotmult{\casb}{\cosalpha}{\sinbeta}
\tdplotmult{\cacb}{\cosalpha}{\cosbeta}
\tdplotmult{\cacg}{\cosalpha}{\cosgamma}
\tdplotmult{\casg}{\cosalpha}{\singamma}
%
\tdplotmult{\cacbsg}{\cacb}{\singamma}
\tdplotmult{\cacbcg}{\cacb}{\cosgamma}
%
%determine rotation matrix elements for Euler transformation
\pgfmathsetmacro{\raaeul}{\cacbcg - \sasg}
\pgfmathsetmacro{\rabeul}{\sacbcg + \casg}
\pgfmathsetmacro{\raceul}{-\sbcg}
\pgfmathsetmacro{\rbaeul}{-\cacbsg - \sacg}
\pgfmathsetmacro{\rbbeul}{-\sacbsg + \cacg}
\pgfmathsetmacro{\rbceul}{\sbsg}
\pgfmathsetmacro{\rcaeul}{\casb}
\pgfmathsetmacro{\rcbeul}{\sasb}
\pgfmathsetmacro{\rcceul}{\cosbeta}
%
%DEBUG: display euler matrix elements
%\raaeul\ \rabeul\ \raceul
%
%\rbaeul\ \rbbeul\ \rbceul
%
%\rcaeul\ \rcbeul\ \rcceul
}

%transforms a coordinate from the main coordinate frame to the rotated coordinate frame
\newcommand{\tdplottransformmainrot}[3]{%
	\tdplotcalctransformmainrot

	\pgfmathsetmacro{\tdplotresx}{\raaeul * #1 + \rabeul * #2 + \raceul * #3}
	\pgfmathsetmacro{\tdplotresy}{\rbaeul * #1 + \rbbeul * #2 + \rbceul * #3}
	\pgfmathsetmacro{\tdplotresz}{\rcaeul * #1 + \rcbeul * #2 + \rcceul * #3}
}

%transforms a coordinate from the rotated coordinate frame to the main coordinate frame
\newcommand{\tdplottransformrotmain}[3]{%
	\tdplotcalctransformrotmain

	\pgfmathsetmacro{\tdplotresx}{\raaeul * #1 + \rabeul * #2 + \raceul * #3}
	\pgfmathsetmacro{\tdplotresy}{\rbaeul * #1 + \rbbeul * #2 + \rbceul * #3}
	\pgfmathsetmacro{\tdplotresz}{\rcaeul * #1 + \rcbeul * #2 + \rcceul * #3}
}


%transforms a coordinate from the main coordinate frame to the rotated coordinate frame
\newcommand{\tdplottransformmainscreen}[3]{%
	\tdplotcalctransformmainscreen

	\pgfmathsetmacro{\tdplotresx}{\raarot * #1 + \rabrot * #2 + \racrot * #3}
	\pgfmathsetmacro{\tdplotresy}{\rbarot * #1 + \rbbrot * #2 + \rbcrot * #3}
}



%\tdplotsetrotatedcoords{\alpha}{\beta}{\gamma}
%generates the coordinate transformation for the rotated coordinate system within the display coordinate system.  This should be called only after the display coordinate system has been defined.  If the display coordinate system changes, this will have to be updated.
%#1: user-specified euler angle \alpha.
%#2: user-specified euler angle \beta.
%#3: user-specified euler angle \gamma.
\newcommand{\tdplotsetrotatedcoords}[3]{%
%
\pgfmathsetmacro{\tdplotalpha}{#1}
\pgfmathsetmacro{\tdplotbeta}{#2}
\pgfmathsetmacro{\tdplotgamma}{#3}
%
\tdplotcalctransformrotmain

%
%now, determine master rotation matrix to define euler-rotated coordinates within the display coordinate frame
\tdplotmult{\raaeaa}{\raarot}{\raaeul}
\tdplotmult{\rabeba}{\rabrot}{\rbaeul}
\tdplotmult{\raceca}{\racrot}{\rcaeul}
%
\tdplotmult{\raaeab}{\raarot}{\rabeul}
\tdplotmult{\rabebb}{\rabrot}{\rbbeul}
\tdplotmult{\racecb}{\racrot}{\rcbeul}
%
\tdplotmult{\raaeac}{\raarot}{\raceul}
\tdplotmult{\rabebc}{\rabrot}{\rbceul}
\tdplotmult{\racecc}{\racrot}{\rcceul}
%
\tdplotmult{\rbaeaa}{\rbarot}{\raaeul}
\tdplotmult{\rbbeba}{\rbbrot}{\rbaeul}
\tdplotmult{\rbceca}{\rbcrot}{\rcaeul}
%
\tdplotmult{\rbaeab}{\rbarot}{\rabeul}
\tdplotmult{\rbbebb}{\rbbrot}{\rbbeul}
\tdplotmult{\rbcecb}{\rbcrot}{\rcbeul}
%
\tdplotmult{\rbaeac}{\rbarot}{\raceul}
\tdplotmult{\rbbebc}{\rbbrot}{\rbceul}
\tdplotmult{\rbcecc}{\rbcrot}{\rcceul}
%
%the third row is not needed for screen display
%\tdplotmult{\rcaeaa}{\rcarot}{\raaeul}
%\tdplotmult{\rcbeba}{\rcbrot}{\rbaeul}
%\tdplotmult{\rcceca}{\rccrot}{\rcaeul}
%
%\tdplotmult{\rcaeab}{\rcarot}{\rabeul}
%\tdplotmult{\rcbebb}{\rcbrot}{\rbbeul}
%\tdplotmult{\rccecb}{\rccrot}{\rcbeul}
%
%\tdplotmult{\rcaeac}{\rcarot}{\raceul}
%\tdplotmult{\rcbebc}{\rcbrot}{\rbceul}
%\tdplotmult{\rccecc}{\rccrot}{\rcceul}
%
%set up the master rotation matrix elements
\pgfmathsetmacro{\raarc}{\raaeaa + \rabeba + \raceca}
\pgfmathsetmacro{\rabrc}{\raaeab + \rabebb + \racecb}
\pgfmathsetmacro{\racrc}{\raaeac + \rabebc + \racecc}
\pgfmathsetmacro{\rbarc}{\rbaeaa + \rbbeba + \rbceca}
\pgfmathsetmacro{\rbbrc}{\rbaeab + \rbbebb + \rbcecb}
\pgfmathsetmacro{\rbcrc}{\rbaeac + \rbbebc + \rbcecc}
%the third row is not needed for screen display
%\pgfmathsetmacro{\rcarc}{\rcaeaa + \rcbeba + \rcceca}
%\pgfmathsetmacro{\rcbrc}{\rcaeab + \rcbebb + \rccecb}
%\pgfmathsetmacro{\rccrc}{\rcaeac + \rcbebc + \rccecc}
%
%DEBUG: display master matrix elements
%\raarc\ \rabrc\ \racrc
%
%\rbarc\ \rbbrc\ \rbcrc
%
%\rcarc\ \rcbrc\ \rccrc
%
\tikzset{tdplot_rotated_coords/.append style={x={(\raarc cm,\rbarc cm)},y={(\rabrc cm, \rbbrc cm)},z={(\racrc cm, \rbcrc cm)}}}%
}

%\tdplotsetrotatedcoordsorigin{point}
%this translates the rotated coordinate system to the specified point.
%#1: user-specified coordinate
\newcommand{\tdplotsetrotatedcoordsorigin}[1]{%
%\pgfmathsetmacro{\tdplotrotatedcoordsorigin}{#1}%
\tikzset{tdplot_rotated_coords/.append style={shift=#1}}%
}

%\tdplotresetrotatedcoordsorigin
%this resets the rotated coordinate system translation back to the origin of the main coordinate system
\newcommand{\tdplotresetrotatedcoordsorigin}{%
%\pgfmathsetmacro{\tdplotrotatedcoordsorigin}{#1}%
\tikzset{tdplot_rotated_coords/.append style={shift={(0,0,0)}}}%
}

%\tdplotsetthetaplanecoords{\phi}
%this places the rotated coordinate system such that it's x'-y' plane coincides with a "theta plane" for the main coordinate system:  This plane contains the z axis, and lies at angle \phi from the x axis.
%#1: user-specified \phi angle from x-axis
\newcommand{\tdplotsetthetaplanecoords}[1]{%
%
	\tdplotresetrotatedcoordsorigin
	\tdplotsetrotatedcoords{270 + #1}{270}{0}%
}
%note: the following rotation permutes the x, y, and z axes in forward progression.  Any value of \alpha greater than 270 will rotate the axes further, allowing for easy selection of the ``theta plane''.
%\tdplotsetrotatedcoords{270}{270}{00}

%note: the following rotation permutes the x,y, and z axes in backward progression.
%\tdplotsetrotatedcoords{0}{90}{90}

%\tdplotsetrotatedthetaplanecoords{\phi'}
%this places the rotated coordinate system into the "theta plane" for the current rotated coordinate system, at user-specified angle \phi'.  Note that it replaces the current rotated coordinate system
%#1: user-specified \phi' angle from x'-axis
\newcommand{\tdplotsetrotatedthetaplanecoords}[1]{%
	\tdplotsetrotatedcoords{\tdplotalpha}{\tdplotbeta}{\tdplotgamma + #1}%
	%
	%permute the coordinates
	\tikzset{tdplot_rotated_coords/.append style={y={(\raarc cm,\rbarc cm)},z={(\rabrc cm, \rbbrc cm)},x={(\racrc cm, \rbcrc cm)}}}%
}

%\tdplotsetcoord{point}{r}{theta}{phi}
%sets a 3d point using spherical polar coordinates.  This also generates xy, xz, and yz projections of this point using appropriately named points
%#1: name of point to set
%#2: user-specified r coordinate
%#3: user-specified \theta coordinate
%#4: user-specified \phi coordinate
\newcommand{\tdplotsetcoord}[4]{%
%
%do some trig to determine angular part of coordinate
\tdplotsinandcos{\sinthetavec}{\costhetavec}{#3}%
\tdplotsinandcos{\sinphivec}{\cosphivec}{#4}%
\tdplotmult{\stcpv}{\sinthetavec}{\cosphivec}%
\tdplotmult{\stspv}{\sinthetavec}{\sinphivec}%
%
%assign the point
\coordinate (#1) at ($#2*(\stcpv,\stspv,\costhetavec)$);
%assign the xy, xz, and yz projections of the point
\coordinate (#1xy) at ($#2*(\stcpv,\stspv,0)$);
\coordinate (#1xz) at ($#2*(\stcpv,0,\costhetavec)$);
\coordinate (#1yz) at ($#2*(0,\stspv,\costhetavec)$);
%assign the x, y, and z projections of the point
\coordinate (#1x) at ($#2*(\stcpv,0,0)$);
\coordinate (#1y) at ($#2*(0,\stspv,0)$);
\coordinate (#1z) at ($#2*(0,0,\costhetavec)$);
}

\newcommand{\tdplotsimplesetcoord}[4]{%
%
%do some trig to determine angular part of coordinate
\tdplotsinandcos{\sinthetavec}{\costhetavec}{#3}%
\tdplotsinandcos{\sinphivec}{\cosphivec}{#4}%
\tdplotmult{\stcpv}{\sinthetavec}{\cosphivec}%
\tdplotmult{\stspv}{\sinthetavec}{\sinphivec}%
%
%assign the point
\coordinate (#1) at ($#2*(\stcpv,\stspv,\costhetavec)$);
}


%\tdplotdrawarc[coordinate system, draw styles]{center}{r}{angle start}{angle end}{label options}{label}
%draws an arc and puts a label in the center with specified node options
%#1: Optional, specifies the coordinate system and any draw style
%#2: center point of arc
%#3: radius of arc
%#4: start angle
%#5: end angle
%#6: label options
%#7: label
%	\tdplotdrawarc{(O)}{0.2}{0}{\phivec}{anchor=north}{$\phi$}
\newcommand{\tdplotdrawarc}[7][tdplot_main_coords]{%
\pgfmathsetmacro{\tdplottemp}{#5 + #4}
\tdplotdiv{\tdplottemp}{\tdplottemp}{2}
\path[#1] #2 + (\tdplottemp:#3) node[#6]{#7};
\draw[#1] #2 + (#4:#3) arc (#4:#5:#3);
}

\def\tdplotdefinepoints(#1,#2,#3)(#4,#5,#6)(#7,#8,#9){%
 \pgfmathsetmacro{\tdplotvertexx}{#1}
 \pgfmathsetmacro{\tdplotvertexy}{#2}
 \pgfmathsetmacro{\tdplotvertexz}{#3}
 \pgfmathsetmacro{\tdplotax}{#4}
 \pgfmathsetmacro{\tdplotay}{#5}
 \pgfmathsetmacro{\tdplotaz}{#6}
 \pgfmathsetmacro{\tdplotbx}{#7}
 \pgfmathsetmacro{\tdplotby}{#8}
 \pgfmathsetmacro{\tdplotbz}{#9}
}%


%draws an arc using three specified points
%\tdplotdrawpolytopearc[thick]{1}{anchor=west}{$\theta$}
\newcommand{\tdplotdrawpolytopearc}[4][]{%

	%determine vector lengths
	\pgfmathsetmacro{\ax}{\tdplotax - \tdplotvertexx}
	\pgfmathsetmacro{\ay}{\tdplotay - \tdplotvertexy}
	\pgfmathsetmacro{\az}{\tdplotaz - \tdplotvertexz}

	\pgfmathsetmacro{\bx}{\tdplotbx - \tdplotvertexx}
	\pgfmathsetmacro{\by}{\tdplotby - \tdplotvertexy}
	\pgfmathsetmacro{\bz}{\tdplotbz - \tdplotvertexz}

	%determine normal to vectors
	\tdplotcrossprod(\ax,\ay,\az)(\bx,\by,\bz)

	%DEBUG: show the cross product
	%\draw[->,blue] (\tdplotvertexx,\tdplotvertexy,\tdplotvertexz) 
		-- ++(\tdplotresx,\tdplotresy,\tdplotresz);

	%get angles for this vector
	\tdplotgetpolarcoords{\tdplotresx}{\tdplotresy}{\tdplotresz}

	\typeout{angles for cross product: phi: \tdplotresphi theta: \tdplotrestheta}

	%place the rotated coordinate system so that the z' axis points along this vector
	\tdplotsetrotatedcoords{\tdplotresphi}{\tdplotrestheta}{0}
	\coordinate (Vertex) at (\tdplotvertexx,\tdplotvertexy,\tdplotvertexz);
	\tdplotsetrotatedcoordsorigin{(Vertex)}

	%DEBUG: show the rotated coordinate system
	%\draw[thick,tdplot_rotated_coords,->] (0,0,0) -- (1,0,0) node[anchor=north east]{$x'$};
	%\draw[thick,tdplot_rotated_coords,->] (0,0,0) -- (0,1,0) node[anchor=north west]{$y'$};
	%\draw[thick,tdplot_rotated_coords,->] (0,0,0) -- (0,0,1) node[anchor=south]{$z'$};

	%calculate the start angle of the arc
	\tdplottransformmainrot{\ax}{\ay}{\az}
	\tdplotgetpolarcoords{\tdplotresx}{\tdplotresy}{\tdplotresz}
	\pgfmathsetmacro{\tdplotstartphi}{\tdplotresphi}


	%calculate the end angle of the arc
	\tdplottransformmainrot{\bx}{\by}{\bz}
	\tdplotgetpolarcoords{\tdplotresx}{\tdplotresy}{\tdplotresz}

	%draw the arc
	\pgfmathparse{\tdplotstartphi < \tdplotresphi}
	\ifthenelse{\equal{\pgfmathresult}{1}}%
		{}%
		{
			\pgfmathsetmacro{\tdplotstartphi}{\tdplotstartphi - 360}
		}
		
	%\typeout{startphi: \tdplotstartphi}
	%\typeout{endphi: \tdplotresphi}

	\draw[tdplot_rotated_coords,#1] (0,0,0) + (\tdplotstartphi:#2) arc (\tdplotstartphi:\tdplotresphi:#2);

	\pgfmathsetmacro{\tdplotresphi}{(\tdplotresphi + \tdplotstartphi)/2}

	\draw[tdplot_rotated_coords] (0,0,0) + (\tdplotresphi:#2) node[#3]{#4};
}


%	\tdplotsphericalsurfaceplot[fill mode]{theta step size}{phi step size}{r}
%draws a surface in spherical polar coordinates given by r(\theta,\phi), where angular ranges and steps are defined.  
%#1: draw styles
%#2: theta segments
%#3: phi segments
%#4: r(\tdplottheta,\tdplotphi)
%#5: stroke color
%#6: fill color
%#7: x axis instructions, to be rendered when \phi = 0
%#8: y axis instructions, to be rendered when \phi = 90
%#9: z axis instructions, to be rendered when plotting is half done
%TODO: fix axes drawing function when the main display axis phi is at 0, 90, etc.  
\newcommand{\tdplotsphericalsurfaceplot}[9][literal]{%
%
	\typeout{3dplot: processing 3d surface plot...}

	%retrieve the angular step sizes
	\pgfmathsetmacro{\origviewthetastep}{360/#2}
	\pgfmathsetmacro{\origviewphistep}{360/#3}

	%determing the angular starting point, based on the step size and display orientation
	\pgfmathparse{ mod(90 + \tdplotmainphi,\origviewphistep)}
	\pgfmathsetmacro{\originalphi}{90 + \tdplotmainphi - \pgfmathresult}

	\pgfmathparse{ mod(\tdplotmaintheta,\origviewthetastep)}
	\pgfmathsetmacro{\originaltheta}{\tdplotmaintheta - \pgfmathresult}


	%this fudge factor helps when properly rendering x and y axes
	\pgfmathsetmacro{\tdplotsuperfudge}{\originaltheta > 90}

	%draw back part of shape, doing left and right side individually
	\foreach \leftright in {1,-1}
	{
		\pgfmathsetmacro{\viewphistart}{\originalphi}
		\pgfmathsetmacro{\viewphistep}{\leftright * \origviewphistep}
		\pgfmathsetmacro{\viewphiinc}{\viewphistart + \viewphistep}
		\pgfmathsetmacro{\viewphiend}{\viewphistart + \leftright * 90 - \viewphistep}
		
		%sweep over phi
		\foreach \curphi in{\viewphistart,\viewphiinc,...,\viewphiend}
		{
			%draw upper and lower parts individually, starting at the point opposite display angle
			\foreach \topbottom in {1,-1}
			{
				\pgfmathsetmacro{\viewthetastep}{\topbottom * \origviewthetastep}
				\pgfmathsetmacro{\viewthetastart}{180 - \originaltheta}

				\ifnum \topbottom=1
					\pgfmathsetmacro{\viewthetaend}{180 - \origviewthetastep}
				\else
					\pgfmathsetmacro{\viewthetaend}{\origviewthetastep}
				\fi
				\pgfmathsetmacro{\viewthetainc}{\viewthetastart + \viewthetastep}

				%perform the rendering of each slice of phi over a range of theta angles
				\tdplotdosurfaceplot{#4}{#7}{#8}{#5}{#6}{#1}
			}
		}
	}
	
	%now that the back half is done, draw the z axis
	\begin{scope}[opacity=1]
		#9 %draw z axis content
	\end{scope}

	%next, draw front part of shape, doing left and right sides individually.  This is essentially the same process as before
	\pgfmathsetmacro{\tdplotsuperfudge}{\originaltheta < 90}
	\foreach \leftright in {1,-1}
	{
		\pgfmathsetmacro{\viewphistep}{\leftright * \origviewphistep}
		\pgfmathsetmacro{\viewphistart}{\originalphi + \leftright * 90}
		\pgfmathsetmacro{\viewphiinc}{\viewphistart + \viewphistep}
		\pgfmathsetmacro{\viewphiend}{\viewphistart + \leftright * 90 - \viewphistep}
		
		%sweep over phi
		\foreach \curphi in{\viewphistart,\viewphiinc,...,\viewphiend}
		{
			%draw upper and lower parts individually, starting at the either the north or south pole
			\foreach \topbottom in {1,-1}
			{
				\pgfmathsetmacro{\viewthetastep}{-\topbottom * \origviewthetastep}
				\ifnum \topbottom=1
					\pgfmathsetmacro{\viewthetastart}{180}
				\else
					\pgfmathsetmacro{\viewthetastart}{0}
				\fi

				\pgfmathsetmacro{\viewthetaend}{\originaltheta - \viewthetastep}
				\pgfmathsetmacro{\viewthetainc}{\viewthetastart + \viewthetastep}

				%perform the rendering
				\tdplotdosurfaceplot{#4}{#7}{#8}{#5}{#6}{#1}
			}
		}
	}
}

%sets the angular range of the polar plot to user-specified values
\newcommand{\tdplotsetpolarplotrange}[4]{%
	\pgfmathsetmacro{\tdplotlowerphi}{#3}
	\pgfmathsetmacro{\tdplotupperphi}{#4}
	\pgfmathsetmacro{\tdplotlowertheta}{#1}
	\pgfmathsetmacro{\tdplotuppertheta}{#2}
}

\newcommand{\tdplotresetpolarplotrange}{%
	\pgfmathsetmacro{\tdplotlowerphi}{0}
	\pgfmathsetmacro{\tdplotupperphi}{360}
	\pgfmathsetmacro{\tdplotlowertheta}{0}
	\pgfmathsetmacro{\tdplotuppertheta}{180}
}



%internal command, performs the actual rendering for the \tdplotsphericalsurfaceplot command
%TODO: find proper syntax and format for internal commands not intended to be used by the general user
\newcommand{\tdplotdosurfaceplot}[6]{%

	\pgfmathsetmacro{\nextphi}{\curphi + \tdplotsuperfudge*\viewphistep}

	\begin{scope}[opacity=1]
	
		%\typeout{ ----------------------------------- }

		%check if the current phi angle is in position to draw the x axis
		\tdplotcheckdiff{\nextphi}{360}{\origviewphistep}{#2}{}
		\tdplotcheckdiff{\nextphi}{0}{\origviewphistep}{#2}{}

		%check if the current phi angle is in position to draw the y axis
		\tdplotcheckdiff{\nextphi}{90}{\origviewphistep}{#3}{}
		\tdplotcheckdiff{\nextphi}{450}{\origviewphistep}{#3}{}
	\end{scope}

	%do the theta sweep
	\foreach \curtheta in{\viewthetastart,\viewthetainc,...,\viewthetaend}
	{

		%convert phi, theta coords into longitude, latitude to make use of pgfpointspherical coordinates
		\pgfmathsetmacro{\curlongitude}{90 - \curphi}
		\pgfmathsetmacro{\curlatitude}{90 - \curtheta}

		%If sweeping to the right, shift the value of phi to the lower value of phi.
		\ifthenelse{\equal{\leftright}{-1.0}}%
			{%
				\pgfmathsetmacro{\curphi}{\curphi - \origviewphistep}
			}{}
		%\fi

		\pgfmathsetmacro{\tdplottheta}{mod(\curtheta,360)}
		\pgfmathsetmacro{\tdplotphi}{mod(\curphi,360)}

		\pgfmathparse{\tdplotphi < 0}
		\ifthenelse{\equal{\pgfmathresult}{1}}{
			\pgfmathsetmacro{\tdplotphi}{\tdplotphi + 360}
		}{}%

		%test to see if this value is within the specified angular range
		\pgfmathparse{\tdplottheta > \tdplotuppertheta}
		\pgfmathsetmacro{\logictest}{1 - \pgfmathresult}
		
		\pgfmathparse{\tdplottheta < \tdplotlowertheta}
		\pgfmathsetmacro{\logictest}{\logictest * (1 - \pgfmathresult)}

		\pgfmathsetmacro{\tdplottheta}{\tdplottheta + \viewthetastep}
		\pgfmathparse{\tdplottheta > \tdplotuppertheta}
		\pgfmathsetmacro{\logictest}{\logictest * (1 - \pgfmathresult)}
		
		\pgfmathparse{\tdplottheta < \tdplotlowertheta}
		\pgfmathsetmacro{\logictest}{\logictest * (1 - \pgfmathresult)}

		\pgfmathparse{\tdplotphi > \tdplotupperphi}
		\pgfmathsetmacro{\logictest}{\logictest * (1 - \pgfmathresult)}
		
		\pgfmathparse{\tdplotphi < \tdplotlowerphi}
		\pgfmathsetmacro{\logictest}{\logictest * (1 - \pgfmathresult)}

		\pgfmathsetmacro{\tdplotphi}{\tdplotphi + \viewphistep}

		\pgfmathparse{\tdplotphi < 0}
		\ifthenelse{\equal{\pgfmathresult}{1}}{
			\pgfmathsetmacro{\tdplotphi}{\tdplotphi + 360}
		}{}%

		\pgfmathparse{\tdplotphi > \tdplotupperphi}
		\pgfmathsetmacro{\logictest}{\logictest * (1 - \pgfmathresult)}
		
		\pgfmathparse{\tdplotphi < \tdplotlowerphi}
		\pgfmathsetmacro{\logictest}{\logictest * (1 - \pgfmathresult)}


		\pgfmathsetmacro{\tdplottheta}{\curtheta}
		\pgfmathsetmacro{\tdplotphi}{\curphi}

		%if using fill color parametric to angles
		\ifthenelse{\equal{#6}{parametricfill}}{%
			%and, if it's being plotted
			\ifthenelse{\equal{\logictest}{1.0}}{%
			\pgfmathsetmacro{\radius}{#1}
			\pgfmathsetmacro{\tdplotr}{\radius*360}  %factor of 360 lets the radius change hue through one full cycle for each unit radius
			
			\pgfmathlessthan{\radius}{0}
			\pgfmathsetmacro{\phaseshift}{180 * \pgfmathresult}

			\pgfmathsetmacro{\colorarg}{#5}
			\pgfmathsetmacro{\colorarg}{\colorarg + \phaseshift}
			\pgfmathsetmacro{\colorarg}{mod(\colorarg,360)}

			\pgfmathlessthan{\colorarg}{0}
			\pgfmathsetmacro{\colorarg}{\colorarg + 360*\pgfmathresult}

			\pgfmathdivide{\colorarg}{360}
			\definecolor{tdplotfillcolor}{hsb}{\pgfmathresult, 1, 1}
			\color{tdplotfillcolor}
			}{}%
		}%
		{%
			\pgfsetfillcolor{#5}
		}
		\pgfsetstrokecolor{#4}

		\ifthenelse{\equal{\leftright}{-1.0}}%
			{%
			\pgfmathsetmacro{\curphi}{\curphi + \origviewphistep}
			}{}
		%\fi

		%if this section is being plotted
		\ifthenelse{\equal{\logictest}{1.0}}{%
		\pgfmathsetmacro{\radius}{abs(#1)}
		\pgfpathmoveto{\pgfpointspherical{\curlongitude}{\curlatitude}{\radius}}

		\pgfmathsetmacro{\tdplotphi}{\curphi + \viewphistep}
		\pgfmathsetmacro{\radius}{abs(#1)}
		\pgfpathlineto{\pgfpointspherical{\curlongitude - \viewphistep}{\curlatitude}{\radius}}

		\pgfmathsetmacro{\tdplottheta}{\curtheta + \viewthetastep}
		\pgfmathsetmacro{\radius}{abs(#1)}
		\pgfpathlineto{\pgfpointspherical{\curlongitude - \viewphistep}{\curlatitude - \viewthetastep}{\radius}}

		\pgfmathsetmacro{\tdplotphi}{\curphi}
		\pgfmathsetmacro{\radius}{abs(#1)}
		\pgfpathlineto{\pgfpointspherical{\curlongitude}{\curlatitude - \viewthetastep}{\radius}}
		\pgfpathclose
	
		\pgfusepath{fill,stroke}
		}{}
	}
}

%\tdplotshowargcolorguide{x position}{y position}{x size}{y size}
%#1: screen x position
%#2: screen y position
%#3: x size (susceptible to scale)
%#4: y size (susceptible to scale)
\newcommand{\tdplotshowargcolorguide}[4]{

\pgfmathsetmacro{\tdplotx}{#1}
\pgfmathsetmacro{\tdploty}{#2}
\pgfmathsetmacro{\tdplothuestep}{5}
\pgfmathsetmacro{\tdplotxsize}{#3}
\pgfmathsetmacro{\tdplotysize}{#4}

\pgfmathsetmacro{\tdplotyscale}{\tdplotysize/360}

\foreach \tdplotphi in {0,\tdplothuestep,...,360}
{
	\pgfmathdivide{\tdplotphi}{360}
	\definecolor{tdplotfillcolor}{hsb}{\pgfmathresult, 1, 1}
	\color{tdplotfillcolor}
	
	\pgfmathsetmacro{\tdplotstarty}{\tdploty + \tdplotphi * \tdplotyscale}
	\pgfmathsetmacro{\tdplotstopy}{\tdplotstarty + \tdplothuestep * \tdplotyscale}
	\pgfmathsetmacro{\tdplotstartx}{\tdplotx}
	\pgfmathsetmacro{\tdplotstopx}{\tdplotx + \tdplotxsize}
	\filldraw[tdplot_screen_coords] (\tdplotstartx,\tdplotstarty) rectangle (\tdplotstopx,\tdplotstopy);
}

	\pgfmathsetmacro{\tdplotstopy}{\tdploty + (360+\tdplothuestep)*\tdplotyscale }
	\pgfmathsetmacro{\tdplotstopx}{\tdplotx + \tdplotxsize}

\draw[tdplot_screen_coords] (\tdplotx,\tdploty) rectangle (\tdplotstopx,\tdplotstopy);

\node[tdplot_screen_coords,anchor=west,xshift=5pt] at (\tdplotstopx,\tdploty) {$0$};
\node[tdplot_screen_coords,anchor=west,xshift=5pt] at (\tdplotstopx,\tdplotstopy) {$2\pi$};

	\pgfmathsetmacro{\tdplotstopy}{\tdploty + (360+\tdplothuestep)/2*\tdplotyscale }
\node[tdplot_screen_coords,anchor=west, xshift=5pt] at (\tdplotstopx, \tdplotstopy) {$\pi$};
}


%\tdplotgetpolarcoords{\vx}{\vy}{\vz}
%determines the theta and phi angle associated with the specified x, y, and z components of a vector
\newcommand{\tdplotgetpolarcoords}[3]{%
%
	\pgfmathsetmacro{\vxcalc}{#1}
	\pgfmathsetmacro{\vycalc}{#2}
	\pgfmathsetmacro{\vzcalc}{#3}
%
	\pgfmathsetmacro{\vcalc}{ sqrt((\vxcalc)^2 + (\vycalc)^2 + (\vzcalc)^2) }
%	\pgfmathsetmacro{\vcalc}{ (\vxcalc^2 + \vycalc^2 + \vzcalc^2)^.5 }

	\pgfmathsetmacro{\vxycalc}{ sqrt((\vxcalc)^2 + (\vycalc)^2) }
%	\pgfmathsetmacro{\vxycalc}{ (\vxcalc^2 + \vycalc^2)^.5 }

	\pgfmathsetmacro{\tdplotrestheta}{asin(\vxycalc/\vcalc)}
%
	%check for angles larger than 90
	\pgfmathparse{\vzcalc < 0}
	\ifthenelse{\equal{\pgfmathresult}{1}}%
		{%
			\pgfmathsetmacro{\tdplotrestheta}{180 - \tdplotrestheta}
		}
		{}
%
	%check for special case: vx = 0
	\ifthenelse{\equal{\vxcalc}{0.0}}%
		{%
			%check the sign of vy, and set angle appropriately
			\pgfmathparse{\vycalc < 0}
			\ifthenelse{\equal{\pgfmathresult}{1}}%
				{%
					\pgfmathsetmacro{\tdplotresphi}{270}
				}
				{%
					\pgfmathparse{\vycalc > 0}
					\ifthenelse{\equal{\pgfmathresult}{1}}%
						{%
							%\typeout{\vycalc}
							\pgfmathsetmacro{\tdplotresphi}{90}
						}
						{%
							%\typeout{OVER HERE!!!!}
							\pgfmathsetmacro{\tdplotresphi}{0}
						}
				}
		}
		{%
			%perform the arctan calculation
			\pgfmathsetmacro{\tdplotresphi}{atan(\vycalc/\vxcalc)}
%
			%check if vx is less than zero, to properly identify the quadrant
			\pgfmathparse{\vxcalc < 0}
			%\typeout{x: \vxcalc\ y: \vycalc\ Raw phi: \tdplotresphi\ math result: \pgfmathresult}
			\ifthenelse{\equal{\pgfmathresult}{1}}%
				{%
					%\typeout{HERE!}
					%increase by half a rotation if necessary
					\pgfmathsetmacro{\tdplotresphi}{\tdplotresphi+180}
				}
				{
					%\typeout{SPOON!}
				}

			%ensure the angle lies between 0 and 360 degrees
			\pgfmathparse{\tdplotresphi < 0}
			\ifthenelse{\equal{\pgfmathresult}{1}}%
				{%
					\pgfmathsetmacro{\tdplotresphi}{\tdplotresphi+360}
				}
				{}
		}
}


%	\tdplotcrossprod(\ax,\ay,\az)(\bx,\by,\bz)
\def\tdplotcrossprod(#1,#2,#3)(#4,#5,#6){%
	\pgfmathsetmacro{\tdplotresx}{#2 * #6 - #3 * #5}
	\pgfmathsetmacro{\tdplotresy}{#3 * #4 - #1 * #6}
	\pgfmathsetmacro{\tdplotresz}{#1 * #5 - #2 * #4}

}

%\newcommand{\tdplottransform
%
%
%\newcommand{\tdplotgetplane}{
%
%}


%Notes
%-----

%PROBLEM:
%the line-by-line coordinate transformation does not accept predefined points.  It only works with literal points.  Example:
%\begin{tikzpicture}[smooth]
%	\draw plot coordinates{(1,0)(2,0.5)(3,0)(3,1)};
%	\draw[x={(0cm,1cm)},y={(1cm,0cm)},color=red] plot coordinates{(1,0)(2,0.5)(3,0)(3,1)};
%\end{tikzpicture}
%
%\begin{tikzpicture}[smooth]
%	\coordinate (A) at (1,0);
%	\coordinate (B) at (2,0.5);
%	\coordinate (C) at (3,0);
%	\coordinate (D) at (3,1);
%	\draw plot coordinates{(A)(B)(C)(D)};
%	\draw[x={(0cm,1cm)},y={(1cm,0cm)},color=red] plot coordinates{(A)(B)(C)(D)};
%\end{tikzpicture}
%SOLUTION: none so far, other than use literal points.


%PROBLEM:
%	\node[tdplot_rotated_coords,anchor=south west] at (\thetavec/2:.5){$\theta$};
%it looks like the \node command can't be placed properly when a shift={} is defined in a style?
%SOLUTION:  Use something like this instead:
%\draw[tdplot_rotated_coords] (O) + (\thetavec/2:.5) node[anchor=south west]{$\theta$};


%PROBLEM:
	%\draw[-stealth,color=orange] (0,0,0) -- (xyz spherical cs:radius=.5,longitude=60,latitude=120);
%this gives the compile error:  Undefined control sequence. <argument> \tikz@cs@radius.  Not sure if this is due to some missing code in the TikZ 3d library.
%SOLUTION: none found yet.