sheet03.tex 9.16 KB
Newer Older
sp2668's avatar
sp2668 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
\documentclass[11pt,a4paper,fleqn]{scrartcl}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[colorlinks=true, citecolor=blue, linkcolor=blue, filecolor=blue,urlcolor=blue]{hyperref}
\hypersetup{
     colorlinks   = true,
     citecolor    = gray
}
\usepackage{wrapfig}

\usepackage{caption}
\captionsetup{format=plain, indent=5pt, font=footnotesize, labelfont=bf}

\setkomafont{disposition}{\scshape\bfseries}

\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{bbm}
\usepackage{mathtools}
% \usepackage{epsfig}
% \usepackage{grffile}
%\usepackage{times}
%\usepackage{babel}
\usepackage{tikz}
\usepackage{paralist}
\usepackage{color}
\usepackage[top=3cm, bottom=2.5cm, left=2.5cm, right=3cm]{geometry}
%\setlength{\mathindent}{1ex}

% PGF
\usepackage{pgfplots}
\usepackage{pgf}
\usepackage{siunitx}
\usepackage{xfrac}
\usepackage{calculator}
\usepackage{calculus}
\usepackage{eurosym}
\usepackage{booktabs}
%\sisetup{per-mode=fraction,%
%	fraction-function=\sfrac}

%\newcommand{\eur}[1]{\EUR{#1}\si{\per\kilo\meter}}
\pgfplotsset{
  compat=newest,
  every axis/.append style={small, minor tick num=3}
}

%\usepackage[backend=biber,style=alphabetic,url=false,doi=false]{biblatex}
%\addbibresource{sheet01_biber.bib}
% \addbibresource{/home/coroa/papers/refs.bib}

\newcommand{\id}{\mathbbm{1}}
\newcommand{\NN}{{\mathbbm{N}}}
\newcommand{\ZZ}{{\mathbbm{Z}}}
\newcommand{\RR}{{\mathbbm{R}}}
\newcommand{\CC}{{\mathbbm{C}}}
\renewcommand{\vec}[1]{{\boldsymbol{#1}}}

\renewcommand{\i}{\mathrm{i}}

\newcommand{\expect}[1]{\langle\,#1\,\rangle}
\newcommand{\e}[1]{\ensuremath{\,\mathrm{#1}}}

\renewcommand{\O}{\mc{O}}
\newcommand{\veps}{\varepsilon}
\newcommand{\ud}[1]{\textup{d}#1\,}

\newcommand{\unclear}[1]{\color{green}#1}
\newcommand{\problem}[1]{\color{red}#1}
\newcommand{\rd}[1]{\num[round-mode=places,round-precision=1]{#1}}

%\DeclareSIUnit{\euro}{\EUR}
\DeclareSIUnit{\dollar}{\$}
\newcommand{\eur}{\text{\EUR{}}}

\usepackage{palatino}
\usepackage{mathpazo}
\setlength\parindent{0pt}
\usepackage{xcolor}
\usepackage{framed}
\definecolor{shadecolor}{rgb}{.9,.9,.9}

%=====================================================================
%=====================================================================
\begin{document}

\begin{center}
sp2668's avatar
sp2668 committed
90 91
 \textbf{\Large Energy System Modelling }\\
 {SS 2018, Karlsruhe Institute of Technology}\\
sp2668's avatar
sp2668 committed
92
 {Institute for Automation and Applied Informatics}\\ [1em]
sp2668's avatar
sp2668 committed
93 94
 \textbf{\textsc{\Large Tutorial III: Storage Optimisation}}\\
 \small Will be worked on in the exercise session on Monday, 16 July 2018.\\[1.5em]
sp2668's avatar
sp2668 committed
95 96 97 98 99
\end{center}

\vspace{.5em}

%=============== ======================================================
sp2668's avatar
sp2668 committed
100
\paragraph{Problem III.1 \normalsize (storage adequacy without losses).}~\\
sp2668's avatar
sp2668 committed
101 102 103
%=====================================================================

\begin{wrapfigure}[11]{r}{0pt}
sp2668's avatar
sp2668 committed
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
 \begin{tikzpicture}
  \begin{axis}[
    domain=0:14, no markers, samples=200
    % xlabel = $x$, ylabel = $f(x)$
   ]
   \addplot+[dashed] {0.3 * (1 + 0.9 * sin(deg(2*pi*x/7)))}; \label{figref:w}
   \addplot+[densely dotted] {0.12*(1 + sin(deg(2*pi*x))}; \label{figref:s}
   \addplot+[solid] {1}; \label{figref:l}
  \end{axis}
 \end{tikzpicture}
 \caption{Diurnal and synoptic variations of wind and solar power generation
  \(G_{N,w}(t)\)
  \autoref{figref:w} and \(G_{S,s}(t)\)
  \autoref{figref:s}, and a constant load (all in per-unit) \(L(t)\)
  \autoref{figref:l}.}
 \label{fig:variations}
sp2668's avatar
sp2668 committed
120 121 122 123 124 125 126 127
\end{wrapfigure}

Imagine a two-node Germany. The South can install solar panels with a capacity factor $Cf_s$ to cover its load $L_S$, while the North uses wind turbines that have a capacity factor $Cf_w$
to feed their load $L_N$. Figure \ref{fig:variations} shows approximations to the daily and synoptic variations of per-unit wind and solar power generation \(G_{N,w}(t)\) and \(G_{S,s}(t)\) and a constant load \(L_{N/S}(t)\):

\vspace{-0.5em}

\begin{align*}
sp2668's avatar
sp2668 committed
128 129 130
 G_{N,w}(t) & = Cf_w(1+A_w \sin \omega_w t), \\
 G_{S,s}(t) & = Cf_s(1+A_s \sin \omega_s t), \\
 L_{N/S}(t) & = A_{l,N/S}.
sp2668's avatar
sp2668 committed
131 132 133 134 135
\end{align*}

The capacity factors and constants are
\vspace{-0.25em}
\begin{align*}
sp2668's avatar
sp2668 committed
136 137 138
 A_{l,N} & = 20 \si{\giga\watt}, & A_{l,S} & = 30 \si{\giga\watt},                                         \\
 Cf_w    & = 0.3,                & A_w     & = 0.9,                & \omega_w & = \frac{2\pi}{7 \text{d}}, \\
 Cf_s    & = 0.12,               & A_s     & = 1.0,                & \omega_s & = \frac{2\pi}{1 \text{d}}. \\
sp2668's avatar
sp2668 committed
139 140 141 142 143
\end{align*}
\vspace{-0.3em}
For now, assume the stores are lossless. Losses will be considered in III.2.

\begin{enumerate}[(a)]
sp2668's avatar
sp2668 committed
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
 % (a)
 \item How much wind capacity $G_{N,w}$ must be installed in the North and solar capacity $G_{S,s}$ in the South?

       % (b)
 \item What is the amount of store and dispatch power capacity $G_{s,store}=\max(-g_s(t))$ and $G_{s,dispatch}= \max g_s(t)$ the storages must have in the North and in the South?

       % (c)
 \item What is the amount of energy capacity one needs in the North and in the South?

       \begin{equation*}
        E_s = \max_t e_s(t) = \max_t \int_{0}^{t} (-g_s(t')) \;\mathrm{d}t'
       \end{equation*}

       % (d)
 \item Should they choose hydrogen or battery storages? And how much would it cost them with the prices in Table 1? Is the South or the North paying more for their energy?

 \item What do you imagine would change if you considered the storage losses given in Table 1 in your results (a)-(d)? Support your statement with a graphical illustration.

sp2668's avatar
sp2668 committed
162
\end{enumerate}
sp2668's avatar
sp2668 committed
163 164
Now we lift the restriction against transmission and allow them to bridge their 500 km separation with a transmission line.

sp2668's avatar
sp2668 committed
165
\begin{enumerate}[(e)]
sp2668's avatar
sp2668 committed
166 167
 % (e)
 \item  Estimate the cost-optimal technology mix by assuming wind energy in the North is only stored in the North and solar energy in the South is likewise only stored in the South! What would happen if you dropped that assumption?
sp2668's avatar
sp2668 committed
168 169 170
\end{enumerate}

\begin{table}[]
sp2668's avatar
sp2668 committed
171 172 173 174 175 176 177 178 179 180 181 182
 \centering
 \label{tab:prices}
 \begin{tabular}{@{}lrrrr@{}}
  \toprule
                             & \eur per kW & \eur per kWh & $\eta_{store}$ & $\eta_{dispatch}$ \\ \midrule
  Battery                    & 300         & 200          & 0.9            & 0.9               \\
  Hydrogen                   & 750         & 10           & 0.75           & 0.58              \\
  Solar                      & 600         &              &                &                   \\
  Wind                       & 1200        &              &                &                   \\
  Transmission line (500 km) & 200         &              &                &                   \\ \bottomrule
 \end{tabular}
 \caption{Investment costs of renewable energy infrastructure.}
sp2668's avatar
sp2668 committed
183 184 185
\end{table}

%=============== ======================================================
sp2668's avatar
sp2668 committed
186
\paragraph{Problem III.2 \normalsize (storage optimization with PyPSA and losses).}~\\
sp2668's avatar
sp2668 committed
187 188 189 190 191
%=====================================================================

Python for Power System Analysis (PyPSA) is a free software toolbox for optimising modern power systems that include features such as variable wind and solar generation, storage units, etc\.. Use the toolbox to extend on your findings in Problem III.1.

\begin{enumerate}[(a)]
sp2668's avatar
sp2668 committed
192 193 194 195 196
 \item Build a network in PyPSA with the two buses North and South and attach the load at each bus and attach the wind and solar generators with availability according to $G_{N,w}(t) = Cf_w(1+A_w\sin \omega_w t)$ and $G_{S,s}(t) = Cf_s(1+A_s\sin \omega_s t)$ for a year (you have to call \texttt{set\_snapshots} for the year) and with \texttt{p\_nom\_extendable} set to True. As help you should have a look at the minimal LOPF example\footnote{\url{https://www.pypsa.org/examples/minimal_example_lopf.html}}, understand what the components documentation\footnote{\url{https://pypsa.org/doc/components.html}} of PyPSA gives you and that you can find the underlying objective function and constraints in the LOPF documentation\footnote{\url{https://pypsa.org/doc/optimal_power_flow.html\#linear-optimal-power-flow}}.
 \item Attach extendable storages at the North and the South! The storages have to be modelled as an \texttt{H2-bus} (a bus with \texttt{carrier='H2'}) linked to the \texttt{AC-bus} North with a \texttt{Link} where \texttt{p\_nom\_extendable=True} with the \texttt{capital\_cost} of the power capacity and an also extendable \texttt{Store} with the \texttt{capital\_cost} of the energy capacity, for instance. The losses can be set on the links as \texttt{efficiency}.
 \item Run an investment optimization by calling the \texttt{lopf} function.
 \item How do your results \texttt{objective} and \texttt{{generators,stores,links}.p\_nom\_opt} compare with the results of III.1(d)?
 \item Now lift the restriction against transmission and allow North and South to bridge their 500 km separation with a transmission line. How does the cost optimal technology mix change compared to III.1(f)?
sp2668's avatar
sp2668 committed
197
 \item Replace the approximated availability time-series of the wind and the solar generators with the ones from \texttt{availability.csv} computed from reanalysis weather data available on the course homepage\footnote{\url{https://nworbmot.org/courses/esm-2018/}} and re-run the LOPF. Compare the results! Explain the differences by looking at the cumulative variations relative to the mean of the availability time-series!
sp2668's avatar
sp2668 committed
198 199
\end{enumerate}
\end{document}