tutorial05-1.ipynb 5.54 KB
Newer Older
sp2668's avatar
sp2668 committed
1 2 3 4 5 6 7 8 9 10
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Energy System Modelling - Tutorial V.1\n",
    "\n",
    "**Classic screening curve analysis for generation investment**\n",
    "\n",
11
    "Let us suppose that demand is inelastic. The demand-duration curve is given by $D=1000-1000z$. Suppose that there is a choice between coal and gas generation plants with a variable cost of 2 and 12 €/MWh, together with load-shedding at 1012 €/MWh. The fixed costs of coal and gas generation are 15 and 10 €/MWh, respectively."
sp2668's avatar
sp2668 committed
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Imports**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pypsa\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Read Data**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Generator marginal (m) and capital (c) costs in EUR/MWh\n",
    "generators = {\"coal\" : {\"m\" : 2, \"c\" : 15},\n",
    "              \"gas\" : {\"m\" : 12, \"c\": 10},\n",
    "              \"load-shedding\" : {\"m\" : 1012, \"c\" : 0}}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "***\n",
    "**(a) Describe the concept of a screening curve and how it helps to determine generation investment, given a demand-duration curve.**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Write your thoughts here:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "***\n",
    "**(b) Plot the screening curve and find the intersections of the generation technologies.**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "***\n",
    "**(c) Compute the long-term equilibrium power plant investment (optimal mix of generation).**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Build the PyPSA network:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Solve the network with `lopf`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Total cost:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Optimal capacity mix:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "***\n",
    "**(d) Plot the load duration curve, the resulting price duration curve and the corresponding generation dispatch. Comment!**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Load duration curve:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Price duration curve:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Generation dispatch:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "***\n",
    "**(e) Demonstrate that the zero-profit condition is fulfilled.**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Calculate total costs:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Calculate total revenue:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.4"
  },
  "varInspector": {
   "cols": {
    "lenName": 16,
    "lenType": 16,
    "lenVar": 40
   },
   "kernels_config": {
    "python": {
     "delete_cmd_postfix": "",
     "delete_cmd_prefix": "del ",
     "library": "var_list.py",
     "varRefreshCmd": "print(var_dic_list())"
    },
    "r": {
     "delete_cmd_postfix": ") ",
     "delete_cmd_prefix": "rm(",
     "library": "var_list.r",
     "varRefreshCmd": "cat(var_dic_list()) "
    }
   },
   "types_to_exclude": [
    "module",
    "function",
    "builtin_function_or_method",
    "instance",
    "_Feature"
   ],
   "window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}