solution03.tex 12.4 KB
Newer Older
sp2668's avatar
sp2668 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
\documentclass[11pt,a4paper,fleqn]{scrartcl}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[colorlinks=true, citecolor=blue, linkcolor=blue, filecolor=blue,urlcolor=blue]{hyperref}
\hypersetup{
     colorlinks   = true,
     citecolor    = gray
}
\usepackage{wrapfig}

\usepackage{caption}
\captionsetup{format=plain, indent=5pt, font=footnotesize, labelfont=bf}

\setkomafont{disposition}{\scshape\bfseries}

\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{bbm}
\usepackage{mathtools}
% \usepackage{epsfig}
% \usepackage{grffile}
%\usepackage{times}
%\usepackage{babel}
\usepackage{tikz}
\usepackage{paralist}
\usepackage{color}
\usepackage[top=3cm, bottom=2.5cm, left=2.5cm, right=3cm]{geometry}
%\setlength{\mathindent}{1ex}

% PGF
\usepackage{pgfplots}
\usepackage{pgf}
\usepackage{siunitx}
\usepackage{xfrac}
\usepackage{calculator}
\usepackage{calculus}
\usepackage{eurosym}
%\sisetup{per-mode=fraction,%
%	fraction-function=\sfrac}

%\newcommand{\eur}[1]{\EUR{#1}\si{\per\kilo\meter}}
\pgfplotsset{
  compat=newest,
  every axis/.append style={small, minor tick num=3}
}

%\usepackage[backend=biber,style=alphabetic,url=false,doi=false]{biblatex}
%\addbibresource{sheet01_biber.bib}
% \addbibresource{/home/coroa/papers/refs.bib}

\newcommand{\id}{\mathbbm{1}}
\newcommand{\NN}{{\mathbbm{N}}}
\newcommand{\ZZ}{{\mathbbm{Z}}}
\newcommand{\RR}{{\mathbbm{R}}}
\newcommand{\CC}{{\mathbbm{C}}}
\renewcommand{\vec}[1]{{\boldsymbol{#1}}}

\renewcommand{\i}{\mathrm{i}}

\newcommand{\expect}[1]{\langle\,#1\,\rangle}
\newcommand{\e}[1]{\ensuremath{\,\mathrm{#1}}}

\renewcommand{\O}{\mc{O}}
\newcommand{\veps}{\varepsilon}
\newcommand{\ud}[1]{\textup{d}#1\,}

\newcommand{\unclear}[1]{\color{green}#1}
\newcommand{\problem}[1]{\color{red}#1}
\newcommand{\rd}[1]{\num[round-mode=places,round-precision=1]{#1}}

%\DeclareSIUnit{\euro}{\EUR}
\DeclareSIUnit{\dollar}{\$}
\newcommand{\eur}{\text{\EUR{}}}

\usepackage{palatino}
\usepackage{mathpazo}
\setlength\parindent{0pt}
\usepackage{xcolor}
\usepackage{framed}
\definecolor{shadecolor}{rgb}{.9,.9,.9}

%=====================================================================
%=====================================================================
\begin{document}

\begin{center}
	\textbf{\Large Energy System Modelling }\\
	{SS 2018, Karlsruhe Institute of Technology}\\
	{Institute of Automation and Applied Informatics}\\ [1em]
	\textbf{\textsc{\Large Solutions to Tutorial III}}\\
	\small Will be worked on in the exercise session on Monday, 16 July 2018.\\[1.5em]
\end{center}

\vspace{1em}

%=============== ======================================================
\paragraph{Solution III.1 \normalsize (storage adequacy).}~\\
%=====================================================================

\begin{wrapfigure}[11]{r}{0pt}
	\begin{tikzpicture}
	\begin{axis}[
	domain=0:14, no markers, samples=200
	% xlabel = $x$, ylabel = $f(x)$
	]
	\addplot+[dashed] {0.3 * (1 + 0.9 * sin(deg(2*pi*x/7)))}; \label{figref:w}
	\addplot+[densely dotted] {0.12*(1 + sin(deg(2*pi*x))}; \label{figref:s}
	\addplot+[solid] {1}; \label{figref:l}
	\end{axis}
	\end{tikzpicture}
	\caption{Diurnal and synoptic variations of wind and solar power generation
		\(G_{N,w}(t)\)
		\autoref{figref:w} and \(G_{S,s}(t)\)
		\autoref{figref:s}, and a constant load (all in per-unit) \(L(t)\)
		\autoref{figref:l}.}
	\label{fig:variations}
\end{wrapfigure}

Imagine a two-node Germany. The South can install solar panels with a capacity factor $Cf_s$ to cover its load $L_S$, while the North uses wind turbines that have a capacity factor $Cf_w$
to feed their load $L_N$. Figure \ref{fig:variations} shows approximations to the daily and synoptic variations of per-unit wind and solar power generation \(G_{N,w}(t)\) and \(G_{S,s}(t)\) and a constant load \(L_{N/S}(t)\):

\begin{align*}
G_{N,w}(t) &= Cf_w(1+A_w \sin \omega_w t), \\
G_{S,s}(t) &= Cf_s(1+A_s \sin \omega_s t), \\
L_{N/S}(t) &= A_{l,N/S}.
\end{align*}

The capacity factors and constants are

\begin{align*}
A_{l,N} &= 20 \si{\giga\watt}, &A_{l,S}&= 30 \si{\giga\watt},\\
Cf_w &= 0.3, &A_w &= 0.9, &\omega_w &= \frac{2\pi}{7 \text{d}}, \\
Cf_s &= 0.12, &A_s &= 1.0, &\omega_s &= \frac{2\pi}{1 \text{d}}. \\
\end{align*}

For now, assume the stores are lossless. Losses will be considered in III.2.

\begin{enumerate}[(a)]
	% (a)
	\begin{shaded}\item How much wind capacity $G_{N,w}$ must be installed in the North and solar capacity $G_{S,s}$ in the South?\end{shaded}
	
	In the North:
	
	$$\expect{L_N} = \expect{G_{N,w} \cdot G_{N,w}(t)}$$ 
	
	$$\Rightarrow \quad A_{l,N} = G_{N,w}\cdot Cf_w $$
	
	 \DIVIDE{20}{0.3}\res
	
	$$\Rightarrow \quad G_{N,w} = \frac{A_{l,N}}{Cf_w} = \frac{20\si{\giga\watt}}{0.3} = \rd{\res}\si{\giga\watt}$$
	
	In the South:
	
	$$\expect{L_S} = \expect{G_{S,s} \cdot G_{S,s}(t)}$$ 
	
	$$\Rightarrow \quad A_{l,S} = G_{S,w}\cdot Cf_w $$
	
	\DIVIDE{30}{0.12}\res
	
	$$\Rightarrow \quad G_{S,s} = \frac{A_{l,S}}{Cf_s} = \frac{30\si{\giga\watt}}{0.12} = \rd{\res}\si{\giga\watt}$$
	
	% (b)
	\begin{shaded}\item What is the amount of store and dispatch power capacity $G_{s,store}=\max(-g_s(t))$ and $G_{s,dispatch}= \max g_s(t)$ the storages must have in the North and in the South?\end{shaded}
	
	In the North:
	
	\begin{align*}
		G_{s,storage,dispatch}^N &= \max ( \pm g_s^N(t)) \\
		&= \max (\pm [L_N(t) - G_{N,w} \cdot G_{N,w}(t)]) \\
		&= \max (\pm [L_N(t) - \frac{A_{l,N}}{Cf_w}\cdot Cf_w\cdot (1+A_w \sin \omega_w t)]) \\
		&= \max (\pm [L_N(t) - A_{l,N} + A_{l,N} A_w \sin \omega_w t)]) \\
		&= \max (\pm [A_{l,N} A_w \sin \omega_w t)]) \\
		&= A_{l,N} A_w = 0.9 \cdot 20 \si{\giga\watt} = 18 \si{\giga\watt}
	\end{align*}
	
	In the South:
	
	\begin{align*}
		G_{s,storage,dispatch}^S &= \max ( \pm g_s^S(t)) \\
		&= \max (\pm [L_S(t) - G_{S,s} \cdot G_{S,s}(t)^{m(t)}]) \\
		&= \max (\pm [L_S(t) - \frac{A_{l,S}}{Cf_s}\cdot Cf_s\cdot (1+A_s \sin \omega_s t)]) \\
		&= \max (\pm [L_S(t) - A_{l,S} + A_{l,S} A_s \sin \omega_s t)]) \\
		&= \max (\pm [A_{l,S} A_s \sin \omega_s t)]) \\
		&= A_{l,S} A_s = 1.0 \cdot 30 \si{\giga\watt} = 30 \si{\giga\watt}
	\end{align*}
	
	% (c)
	\begin{shaded}\item What is the amount of energy capacity one needs in the North and in the South?
	
	\begin{equation}
		E_s = \max_t e_s(t) = \max_t \int_{0}^{t} (-g_s(t')) \;\mathrm{d}t'
	\end{equation}
	
\end{shaded}
	
	In the North:
	
	\begin{align*}
		e_s^N(t) &= \int_{0}^{t} -g_s^N(t') \;\mathrm{d}t' = \int_{0}^{t} A_{l,N} A_w \sin \omega_w t' \;\mathrm{d}t' \\
		&= A_{l,N} A_w \frac{-\cos(\omega_w t')}{\omega_w}\Big|_0^t = A_{l,N} A_w \frac{1-\cos(\omega_w t')}{\omega_w}
	\end{align*}
	
	\begin{equation*}
		E_s^N = \max_t e_s(t) = \frac{2A_{l,N}A_w}{\omega_w} = \frac{2\cdot 20 \si{\giga\watt}\cdot 0.9}{2\pi} \cdot 7\cdot 24 \si{\hour} = 1 \si{\tera\watt\hour}
	\end{equation*}
	
		In the South:
	
	\begin{align*}
	e_s^S(t) &= \int_{0}^{t} -g_s^S(t') \;\mathrm{d}t' = \int_{0}^{t} A_{l,S} A_s \sin \omega_s t' \;\mathrm{d}t' \\
	&= A_{l,S} A_s \frac{-\cos(\omega_s t')}{\omega_s}\Big|_0^t = A_{l,S} A_s \frac{1-\cos(\omega_s t')}{\omega_s}
	\end{align*}
	
	\begin{equation*}
	E_s^S = \max_t e_s(t) = \frac{2A_{l,S}A_s}{\omega_s} = \frac{2\cdot 30 \si{\giga\watt}\cdot 1}{2\pi} \cdot 24 \si{\hour} = 230 \si{\giga\watt\hour}
	\end{equation*}
	
	% (d)
	\begin{shaded}\item Should they choose hydrogen or battery storages? And how much would it cost them? Is the South or the North paying more for their energy?\end{shaded}
	
	\textbf{In the North:}
	
	The cost of renewable generation in the North is
	
	$$P_w^N=G_{N,w} \cdot 1200 \text{\EUR{}}\si{\per\kilo\watt}=80\cdot10^9\text{\EUR{}} $$
	
	The minimal (lossless) corresponding cost to supply constant demand by using hydrogen as storage technology are
	
	\begin{align*}
		P_h^N &= 750 \text{\EUR{}}\si{\per\kilo\watt} \cdot G_{s,storage,dispatch}^N + 10 \text{\EUR{}}\si{\per\kilo\watt\hour} \cdot E_s^N \\
		&= 13.5 \cdot 10^9 \eur + 10 \cdot 10^9 \eur \\
		&= 23.5 \cdot 10^9 \eur
	\end{align*}
	
	The minimal (lossless) corresponding cost to supply constant demand by using batteries as storage technology are:
	
	\begin{align*}
	P_b^N &= 300 \text{\EUR{}}\si{\per\kilo\watt} \cdot G_{s,storage,dispatch}^N + 200 \text{\EUR{}}\si{\per\kilo\watt\hour} \cdot E_s^N \\
	&= 5.4 \cdot 10^9 \eur + 200 \cdot 10^9 \eur \\
	&= 205.4 \cdot 10^9 \eur
	\end{align*}
	
	The minimal (lossless) total system cost using hydrogen storages accumulates to
	
	$$P_w^N + P_h^N = 104 \cdot 10^9\eur \leq P_{w+h}^N$$
	
	whereas the system cost using batteries are
	
	$$P_w^N + P_b^N = 285 \cdot 10^9\eur \leq P_{w+b}^N.$$
	
	Thus, the North should choose hydrogen storages.\\~\\
	
	\textbf{In the South:}
	
	The cost of renewable generation in the South is
	
	$$P_s^S=G_{S,s} \cdot 600 \text{\EUR{}}\si{\per\kilo\watt}=150\cdot10^9\text{\EUR{}} $$
	
	The minimal (lossless) corresponding cost to supply constant demand by using hydrogen as storage technology are
	
	\begin{align*}
	P_h^S &= 1200 \text{\EUR{}}\si{\per\kilo\watt} \cdot G_{s,storage,dispatch}^S + 10 \text{\EUR{}}\si{\per\kilo\watt\hour} \cdot E_s^S \\
	&= 22.5 \cdot 10^9 \eur + 2.3 \cdot 10^9 \eur \\
	&= 24.8 \cdot 10^9 \eur
	\end{align*}
	
	The minimal (lossless) corresponding cost to supply constant demand by using batteries as storage technology are:
	
	\begin{align*}
	P_b^S &= 300 \text{\EUR{}}\si{\per\kilo\watt} \cdot G_{s,storage,dispatch}^S + 200 \text{\EUR{}}\si{\per\kilo\watt\hour} \cdot E_s^S \\
	&= 9 \cdot 10^9 \eur + 46 \cdot 10^9 \eur \\
	&= 54 \cdot 10^9 \eur
	\end{align*}
		
	The minimal (lossless) total system cost using hydrogen storages accumulates to
	
	$$P_s^S + P_h^S = 175 \cdot 10^9\eur \leq P_{s+h}^S$$
	
	whereas the system cost using batteries are
	
	$$P_s^S + P_b^S = 204 \cdot 10^9\eur \leq P_{s+b}^S$$
	
	Thus, the South should also choose hydrogen storages.\\~\\
	
	\textbf{Cost comparison between North and South:}
	
	Without taking losses into account, both regions should choose hydrogen storages. Overall, the North can provide electricity at a lower rate than the South:
	
	$$\tilde{P}_{w+h}^N = \frac{104 \cdot 10^9 \eur}{20 \si{\giga\watt}} = 5 \cdot 10^9 \eur \si{\per\giga\watt}$$
	
	$$\tilde{P}_{s+h}^S = \frac{175 \cdot 10^9 \eur}{30 \si{\giga\watt}} = 6 \cdot 10^9 \eur \si{\per\giga\watt}$$
	
	% (e)
	\begin{shaded}
		\item What do you imagine would change if you considered the storage losses given in Table 1 in your results (a)-(d)? Support your statement with a graphical illustration.
	\end{shaded}

	To compensate for the energy losses wind and solar capacity $G_{N/S,w/s}$, store and dispatch power capacities $G_s$ and storage energy capacities $E_s$ have to increase.
	
	% (f)
	\begin{shaded}\item Now we lift the restriction against transmission and allow them to bridge their 500 km separation with a transmission line. Estimate the cost-optimal technology mix by assuming wind energy in the North is only stored in the North and solar energy in the South is likewise only stored in the South! What would happen if you dropped that assumption?\end{shaded}
	
	Because $\tilde{P}_{w+h}^N < \tilde{P}_{w+h}^S$ there will be energy exports from North to South:
	
	$$E^N > E^S \quad \text{and} \quad E^N + E^S = 50 \si{\giga\watt}$$
	
	The total price of electricity is given by
	
	\begin{align*}
		P_{tot} &=\frac{ E^N \cdot \tilde{P}_{w+h}^N + E^S \cdot \tilde{P}_{s+h}^S + (E^N - E^S)\cdot 200 \eur\si{\per\kilo\watt}}{E^N + E^S} \\
		&= \frac{E^N \cdot \tilde{P}_{w+h}^N + (50\si{\giga\watt} - E^N) \cdot \tilde{P}_{s+h}^S + (2E^N - 50\si{\giga\watt})\cdot 200 \eur\si{\per\kilo\watt}}{E^N + E^S} \\
		&= \frac{E^N (\tilde{P}_{w+h}^N - \tilde{P}_{s+h}^S + 400 \eur \si{\per\kilo\watt}) + 50 \si{\giga\watt} (\tilde{P}_{s+h}^S - 200 \eur \si{\per\kilo\watt})}{E^N + E^S} \\
	\end{align*}
	
	Now, minimising the term for a choice of $E^N$ will yield
		
	\begin{align*}
	E^N &= 50 \si{\giga\watt}
	\end{align*}
	
	such that all power would be produced from wind in the North and the total system cost is
	
	\begin{align*}
	\min P_{tot} &= \frac{-0.6 \cdot 50 \cdot 10^9 \eur + 5.8 \cdot 50 \cdot 10^9 \eur}{50 \si{\giga\watt}} \\
	&= \frac{260 \cdot 10^9 \eur}{50 \si{\giga\watt}} = 5.2 \cdot 10^9 \eur \si{\per\giga\watt}
	\end{align*}
	
	Compared to the weighted electricity cost of North and South without transmission
	
	\begin{align*}
	\min \tilde{P}_{tot} &= \frac{20\si{\giga\watt}\cdot 5 \cdot 10^9 \eur \si{\per\giga\watt} + 30\si{\giga\watt}\cdot 6 \cdot 10^9 \eur \si{\per\giga\watt}}{50 \si{\giga\watt}} \\
	&= \frac{280 \cdot 10^9 \eur}{50 \si{\giga\watt}} = 5.6 \cdot 10^9 \eur \si{\per\giga\watt}
	\end{align*}
	
	the system cost could be reduced by approx.\ 7 \%.
	
\end{enumerate}

\end{document}