solution04.tex 13 KB
Newer Older
sp2668's avatar
sp2668 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
\documentclass[11pt,a4paper,fleqn]{scrartcl}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[colorlinks=true, citecolor=blue, linkcolor=blue, filecolor=blue,urlcolor=blue]{hyperref}
\hypersetup{
     colorlinks   = true,
     citecolor    = gray
}
\usepackage{wrapfig}

\usepackage{caption}
\captionsetup{format=plain, indent=5pt, font=footnotesize, labelfont=bf}

\setkomafont{disposition}{\scshape\bfseries}

\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
Fabian Neumann's avatar
Fabian Neumann committed
20
21
%\usepackage{bbm}
% \usepackage{mathtools}
sp2668's avatar
sp2668 committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
% \usepackage{epsfig}
% \usepackage{grffile}
%\usepackage{times}
%\usepackage{babel}
\usepackage{tikz}
\usepackage{paralist}
\usepackage{color}
\usepackage[top=3cm, bottom=2.5cm, left=2.5cm, right=3cm]{geometry}
%\setlength{\mathindent}{1ex}

% PGF
\usepackage{pgfplots}
\usepackage{pgf}
\usepackage{siunitx}
\usepackage{xfrac}
\usepackage{calculator}
\usepackage{calculus}
\usepackage{eurosym}
\usepackage{booktabs}
%\sisetup{per-mode=fraction,%
%	fraction-function=\sfrac}

%\newcommand{\eur}[1]{\EUR{#1}\si{\per\kilo\meter}}
\pgfplotsset{
  compat=newest,
  every axis/.append style={small, minor tick num=3}
}

%\usepackage[backend=biber,style=alphabetic,url=false,doi=false]{biblatex}
%\addbibresource{sheet01_biber.bib}
% \addbibresource{/home/coroa/papers/refs.bib}

\newcommand{\id}{\mathbbm{1}}
\newcommand{\NN}{{\mathbbm{N}}}
\newcommand{\ZZ}{{\mathbbm{Z}}}
\newcommand{\RR}{{\mathbbm{R}}}
\newcommand{\CC}{{\mathbbm{C}}}
\renewcommand{\vec}[1]{{\boldsymbol{#1}}}

\renewcommand{\i}{\mathrm{i}}

\newcommand{\expect}[1]{\langle\,#1\,\rangle}
\newcommand{\e}[1]{\ensuremath{\,\mathrm{#1}}}

\renewcommand{\O}{\mc{O}}
\newcommand{\veps}{\varepsilon}
\newcommand{\ud}[1]{\textup{d}#1\,}

\newcommand{\unclear}[1]{\color{green}#1}
\newcommand{\problem}[1]{\color{red}#1}
\newcommand{\rd}[1]{\num[round-mode=places,round-precision=1]{#1}}

%\DeclareSIUnit{\euro}{\EUR}
\DeclareSIUnit{\dollar}{\$}
\newcommand{\eur}{\text{\EUR{}}}

\usepackage{palatino}
\usepackage{mathpazo}
\setlength\parindent{0pt}
\usepackage{xcolor}
\usepackage{framed}
\definecolor{shadecolor}{rgb}{.9,.9,.9}

\def\cap{\text{Cap}}
\def\floor{\text{Floor}}
\def\l{\lambda}
\def\m{\mu}
\def\d{\partial}
\def\cL{\mathcal{L}}
\def\co2{CO${}_2$}

\def\mw{\text{ MW}}
\def\mwh{\text{ MWh}}
\def\gw{\text{ GW}}
\def\gwh{\text{ GWh}}
\def\emwh{\text{ \euro/MWh}}
\def\bemwh{\text{ [\euro/MWh]}}
\newcommand{\ubar}[1]{\text{\b{$#1$}}}

%=====================================================================
%=====================================================================
\begin{document}

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
\begin{flushright}
  \textbf{Energy System Modelling }\\
  {\small Karlsruhe Institute of Technology}\\
  {\small Institute for Automation and Applied Informatics}\\
  {\small Summer Term 2019}\\
 \end{flushright}
 
  
  \vspace{-0.5em}
  \hrulefill
  \vspace{0.3em}
 
 \begin{center}
  \textbf{\textsc{\Large Solutions IV: Electricity Markets}}\\
  \small Will be worked on in the exercise session on Friday, 14 June 2019.\\[1.5em]
 \end{center}
 

 \vspace{-0.5em}
 \hrulefill
 \vspace{0.8em}
 
sp2668's avatar
sp2668 committed
127
128
129
130
131
132
133

%=============== ======================================================
\paragraph{Solution IV.1 \normalsize (Shadow prices of limits on consumption).}~\\
%=====================================================================

Suppose that the utility for the electricity consumption of an industrial company is given by
\[
sp2668's avatar
sp2668 committed
134
U(d) = 70d - 3d^2 [\textrm{\euro}/\si{\mega\watt\hour}] \quad , \quad d_{min}=2\leq d \leq d_{max}=10,
sp2668's avatar
sp2668 committed
135
\]
136
where $d$ is the demand in MW and $d_{min}, d_{max}$ are the minimum and maximum demand. \\
sp2668's avatar
sp2668 committed
137
[1em]
138
139
Assume that the company is maximising its net surplus for a given electricity price $\pi$, i.e. it maximises $\max_{d} \left[U(d) -
\pi d\right]$.
sp2668's avatar
sp2668 committed
140
\begin{enumerate}[(a)]
sp2668's avatar
sp2668 committed
141
 \begin{shaded} \item If the price is $\pi = 5$~\euro/MWh, what is the optimal
142
143
144
  demand $d^*$?  What is the value of the KKT multiplier $\mu_{max}$
  for the constraint $d \leq d_{max}=10$ at this optimal solution?
  What is the value of $\mu_{min}$ for $d \geq d_{min} = 2$?\end{shaded}
sp2668's avatar
sp2668 committed
145
146
 We convert the exercise to an optimisation problem with objective
 \begin{equation}
147
  \max_d U(d) - \pi d
sp2668's avatar
sp2668 committed
148
149
150
 \end{equation}
 with constraints
 \begin{align}
151
152
  d  & \leq d_{max} \hspace{1cm}\leftrightarrow\hspace{1cm} \m_{max}  \\
  -d & \leq -d_{min} \hspace{1cm}\leftrightarrow\hspace{1cm} \m_{min}
sp2668's avatar
sp2668 committed
153
154
155
156
 \end{align}

 From stationarity we get:
 \begin{align}
157
158
  0 & =   \frac{\d}{\d d} \left(U(d) - \pi d\right) - \m_{max} \frac{\d}{\d d} (d-d_{max})- \m_{min} \frac{\d}{\d d} (-d+d_{min}) \\
    & =  U'(d) - \pi - \m_{max} + \m_{min} \label{eq:2stat}
sp2668's avatar
sp2668 committed
159
160
 \end{align}

161
162
 The marginal utility curve is $U'(d) = 70 - 6d$ [\euro/MWh]. At
 $\pi = 5$, the demand would be determined by $5=70-6d$, i.e. $d =
sp2668's avatar
sp2668 committed
163
  65/6 = 10.8333$, which is above the consumption limit
164
 $d_{max} = 10$. Therefore the optimal demand is $d^* = 10$, the upper limit is binding $\mu_{max}
sp2668's avatar
sp2668 committed
165
166
167
  \geq 0$ and the lower limit is non-binding $\mu_{min} = 0$.

 To determine the value of $\mu_{max}$ we use \eqref{eq:2stat} to get
168
 $\m_{max} = U'(d^*) - \pi = U'(10) - 5 = 5$.
sp2668's avatar
sp2668 committed
169
170
171

 \begin{shaded}
  \item Suppose now the electricity price is $\pi = 60$~\euro/MWh. What are
172
  the optimal demand $d^*$, $\mu_{max}$ and $\mu_{min}$ now?
sp2668's avatar
sp2668 committed
173
174
 \end{shaded}

175
 At $\pi = 60$, the demand would be determined by $60=70-6d$, i.e. $d = 10/6 = 1.667$, which is below the consumption limit $d_{min} = 2$. Therefore the optimal demand is $d^* = 2$, the upper limit is non-binding $\mu_{max}
sp2668's avatar
sp2668 committed
176
177
178
  = 0$ and the lower limit is binding $\mu_{min} \geq 0$.

 To determine the value of $\mu_{min}$ we use \eqref{eq:2stat} to get
179
 $\m_{min} =  \pi - U'(d^*) = 60 - U'(2) = 2$.
sp2668's avatar
sp2668 committed
180
181
182
\end{enumerate}

%=============== ======================================================
sp2668's avatar
sp2668 committed
183
\paragraph{Solution IV.2 \normalsize (Economic dispatch in a single bidding zone).}~\\
sp2668's avatar
sp2668 committed
184
185
%=====================================================================

sp2668's avatar
sp2668 committed
186
Consider an electricity market with two generator types, one with the cost function $C_1(G_1)=c_1G_1$ with variable cost $c_1 = 20\emwh$, capacity $K_1 = 300\mw$ and a dispatch rate of $G_1$~[MW], and another with the cost function $C_2(G_2)=c_2G_2$ with variable cost $c_2=50\emwh$, capacity $K_2=400\mw$ and a dispatch rate of $G_2$~[MW]. The demand has utility function $U(D) = 8000D - 5D^2$~[\euro/h] for a consumption rate of $D$~[MW].
sp2668's avatar
sp2668 committed
187
\begin{enumerate}[(a)]
sp2668's avatar
sp2668 committed
188
189
190
191
 \begin{shaded}\item What are the objective function and constraints required for an optimisation problem to maximise short-run social welfare in this market?\end{shaded}

 The optimisation problem has objective function:
 \begin{equation*}
sp2668's avatar
sp2668 committed
192
  \max_{D,G_1,G_2}\left[ U(D) - C_1(G_1) - C_2(G_2) \right] =     \max_{D,G_1,G_2} \left[8000D-5D^2 - c_1G_1 - c_2G_2 \right]
sp2668's avatar
sp2668 committed
193
194
195
 \end{equation*}
 with constraints:
 \begin{align*}
sp2668's avatar
sp2668 committed
196
197
198
199
200
  D - G_1 - G_2 & = 0 \leftrightarrow \l              \\
  G_1           & \leq K_1 \leftrightarrow \bar{\m}_1 \\
  G_2           & \leq K_2 \leftrightarrow \bar{\m}_2 \\
  -G_1          & \leq 0 \leftrightarrow \ubar{\m}_1  \\
  -G_2          & \leq 0 \leftrightarrow \ubar{\m}_2
sp2668's avatar
sp2668 committed
201
202
203
204
 \end{align*}

 \begin{shaded}\item Write down the Karush-Kuhn-Tucker (KKT) conditions for this problem.\end{shaded}

205
 Stationarity gives for $D$:
sp2668's avatar
sp2668 committed
206
 \begin{equation*}
207
  \frac{\d U}{\d D} - \l  = 8000 - 10D - \l = 0
sp2668's avatar
sp2668 committed
208
 \end{equation*}
sp2668's avatar
sp2668 committed
209
 Stationarity for $G_1$ gives:
sp2668's avatar
sp2668 committed
210
 \begin{equation*}
sp2668's avatar
sp2668 committed
211
  -\frac{\d C_1}{\d G_1} + \l - \m_1  =  -c_1+ \l - \bar{\m}_1 + \ubar{\m_1} = 0
sp2668's avatar
sp2668 committed
212
 \end{equation*}
sp2668's avatar
sp2668 committed
213
 Stationarity for $G_2$ gives:
sp2668's avatar
sp2668 committed
214
 \begin{equation*}
sp2668's avatar
sp2668 committed
215
  -\frac{\d C_2}{\d G_2} + \l - \m_2  =  -c_2+ \l - \bar{\m}_2 + \ubar{\m_2} = 0
sp2668's avatar
sp2668 committed
216
 \end{equation*}
sp2668's avatar
sp2668 committed
217
 Primal feasibility is just the constraints above. Dual feasibility is $\bar{\m}_i,\ubar{\m}_i \geq 0$ and complementary slackness is $\bar{\m}_i(G_i-K) = 0$ and $\ubar{\m}_i G_i = 0$ for $i=1,2$.
sp2668's avatar
sp2668 committed
218
219
220
221
222

 \begin{shaded}\item Determine the optimal rate of production of the generators and the value of all KKT multipliers. What is the interpretation of the respective KKT multipliers?\end{shaded}
 The marginal utility at the full output of the generators, $K_1
  + K_2 = $ 700~MW is $U'(700) = 8000 - 10\cdot700 = 1000$ \euro/MWh,
 which is higher than the costs $c_i$, so we'll find optimal rates
sp2668's avatar
sp2668 committed
223
 $G_1^* = K_1$ and $G_2^* = K_2$ and $D^* = K_1+K_2$. This means $\l
sp2668's avatar
sp2668 committed
224
225
226
227
228
229
230
  = U'(K_1+K_2) = 1000$ \euro/MWh, which is the market price. Because
 the lower constraints on the generator output are not binding, from
 complementary slackness we have $\ubar{\m}_i = 0$. The upper
 constraints are binding, so $\bar{\m}_i \geq 0$.
 From stationarity $\bar{\m}_i =
  \l - c_i$, which is the increase in social welfare if Generator $i$
 could increase its capacity by a marginal amount.
sp2668's avatar
sp2668 committed
231
232
233
\end{enumerate}

%=============== ======================================================
sp2668's avatar
sp2668 committed
234
\paragraph{Solution IV.3 \normalsize (efficient dispatch in a two-bus power system).}~\\
sp2668's avatar
sp2668 committed
235
236
237
%=====================================================================

\begin{figure}[h]
sp2668's avatar
sp2668 committed
238
239
240
241
 \centering
 \includegraphics[width=14cm]{two-bus}
 \caption{A simple two-bus power system.}
 \label{twobus}
sp2668's avatar
sp2668 committed
242
243
\end{figure}

sp2668's avatar
sp2668 committed
244
Consider the two-bus power system shown in Figure \ref{twobus}, where the two nodes represent two markets, each with different total demand, and one generator at each node. At node A the demand is $D_A = 2000 \si{\mega\watt}$, whereas at node B the demand is $D_B = 1000 \si{\mega\watt}$. Furthermore, there is a transmission line with a capacity denoted by $F_{AB}$. The marginal cost of production of the generators connected to buses A and B are given respectively by the following expressions:
sp2668's avatar
sp2668 committed
245
\begin{align*}
sp2668's avatar
sp2668 committed
246
247
 MC_A & = 20 + 0.02 G_A \hspace{1cm}\eur/\si{\mega\watt\hour}  \\
 MC_B & = 15 + 0.03 G_B \hspace{1cm} \eur/\si{\mega\watt\hour}
sp2668's avatar
sp2668 committed
248
249
\end{align*}

sp2668's avatar
sp2668 committed
250
Assume that the demands $D_A$ and $D_B$ are constant and insensitive to price, that energy is sold at its marginal cost of production and that there are no limits on the output of the generators.
sp2668's avatar
sp2668 committed
251
252

\begin{enumerate}[(a)]
sp2668's avatar
sp2668 committed
253
254
255
 \begin{shaded}\item Calculate the price of electricity at each bus, the production
  of each generator, the flow on the line, and the value of any KKT
  multipliers for the following cases:\end{shaded}
sp2668's avatar
sp2668 committed
256
 Use the following nomenclature: price $\lambda_{A/B}$, generation $G_{A/B}$, flow $F_{AB}$.
sp2668's avatar
sp2668 committed
257
258
259
260
 \begin{enumerate}[(i)]
  \begin{shaded}\item The line between buses A and B is disconnected.\end{shaded}
  $\l_A= 80\emwh$, $\l_B=35\emwh$,

sp2668's avatar
sp2668 committed
261
  $G_{A}=2000$ MW, $G_B=1000$ MW, $F_{AB}=0$
sp2668's avatar
sp2668 committed
262
263
264
265

  \begin{shaded}\item The line between buses A and B is in service and has an unlimited capacity.\end{shaded}
  $\l_A= 53\emwh$, $\l_B=53\emwh$,

sp2668's avatar
sp2668 committed
266
  $G_{A}=1100\mw$, $G_B=1900$ MW, $F_{AB}=-900\mw$
sp2668's avatar
sp2668 committed
267
268
269
270

  \begin{shaded}\item The line between buses A and B is in service and has an unlimited capacity, but the maximum output of Generator B is 1500~MW.\end{shaded}
  $\l_A= 65\emwh$, $\l_B=65\emwh$,

sp2668's avatar
sp2668 committed
271
  $G_{A}=1500\mw$, $G_B=1500$ MW, $F_{AB}=-500\mw$
sp2668's avatar
sp2668 committed
272
273
274
275

  \begin{shaded}\item The   line between buses A and B is in service and has an unlimited capacity, but the maximum output of Generator A is 900~MW. The output of Generator B is unlimited.\end{shaded}
  $\l_A= 57\emwh$, $\l_B=57\emwh$,

sp2668's avatar
sp2668 committed
276
  $G_{A}=900\mw$, $G_B=2100$ MW, $F_{AB}=-1100\mw$
sp2668's avatar
sp2668 committed
277
278
279
280

  \begin{shaded}\item The line between buses A and B is in service but its capacity is limited to 600~MW. The output of the generators is unlimited.\end{shaded}
  $\l_A= 62\emwh$, $\l_B=47\emwh$,

sp2668's avatar
sp2668 committed
281
  $G_{A}=1400\mw$, $G_B=1600$ MW, $F_{AB}=-600\mw$
sp2668's avatar
sp2668 committed
282
283
 \end{enumerate}
 \begin{shaded}\item Calculate the generator revenues, generator profits, consumer payments and consumer net surplus for all the cases considered in the above problem. Who benefits from the line connecting these two buses?\end{shaded}
sp2668's avatar
sp2668 committed
284
 Generator revenues $R_{i}$, generator costs $C_{i}$, generator profits $P_{i}$, consumer payments $E_{i}$. Find the generator profits by subtracting the costs from the revenue. Costs are given by integrating the marginal cost, i.e. $C_A = 20G_A + 0.015G_A^2$ and $C_B = 15G_B + 0.01G_B^2$. The generator at $B$ and the consumers at $A$ benefit from the line (price increases at $B$, decreases at $B$).
sp2668's avatar
sp2668 committed
285
286
 \begin{table}[!h]
  \centering
sp2668's avatar
sp2668 committed
287
  \begin{tabular}{lrrrrr}
sp2668's avatar
sp2668 committed
288
   \toprule
sp2668's avatar
sp2668 committed
289
   Case          & (i)      & (ii)     & (iii)    & (iv)     & (v)      \\
sp2668's avatar
sp2668 committed
290
   \midrule
sp2668's avatar
sp2668 committed
291
292
293
294
   $E_A$ (\euro) & 160,000 & 106,000 & 130,000 & 114,000 & 124,000 \\
   $R_A$ (\euro) & 160,000 & 58,300  & 97,500  & 51,300  & 86,800  \\
   $C_A$ (\euro) & 100,000 & 40,150  & 63,750  & 30,150  & 57,400  \\
   $P_A$ (\euro) & 60,000  & 18,150  & 33,750  & 21,150  & 29,400  \\
sp2668's avatar
sp2668 committed
295
   \midrule
sp2668's avatar
sp2668 committed
296
297
298
299
   $E_B$ (\euro) & 35,000  & 53,000  & 65,000  & 57,000  & 47,000  \\
   $R_B$ (\euro) & 35,000  & 100,700 & 97,500  & 119,700 & 75,200  \\
   $C_B$ (\euro) & 25,000  & 64,600  & 45,000  & 75,600  & 49,600  \\
   $P_B$ (\euro) & 10,000  & 36,100  & 52,500  & 44,100  & 25,600  \\
sp2668's avatar
sp2668 committed
300
301
302
303
304
305
306
   \bottomrule
  \end{tabular}
 \end{table}

 \begin{shaded}\item Calculate the congestion surplus for case (v). For what values of the flow on the line between buses A and B is the congestion surplus equal to zero?\end{shaded}
 Congestion surplus is 9000 \euro:
 \begin{equation*}
sp2668's avatar
sp2668 committed
307
  \left(E_A + E_B\right) - (R_A + R_B) = |F_{AB}|\times (\l_A - \l_B)
sp2668's avatar
sp2668 committed
308
 \end{equation*}
sp2668's avatar
sp2668 committed
309
 Congestion surplus is equal to zero when the flow $F_{AB}=0$, or when it is equal to the unconstrained value $F_{AB}=-900\mw$ (then $\l_A = \l_B$).
sp2668's avatar
sp2668 committed
310
311
312
313
\end{enumerate}


\end{document}