Commit 09ef9d28 authored by Fabian Neumann's avatar Fabian Neumann
Browse files

update tutorial-6 bonus notebooks

parent 8a870662
%% Cell type:markdown id: tags:
## Tutorial VI.1
Consider a long-term multi-year investment problem where **CSP (Concentrated Solar Power)** has a learning curve such that
$$LCOE = c_0 \left(\frac{x_t}{x_0}\right)^{-\gamma} + c_1$$
where $c_0$ is cost at start, $c_1$ is material cost and $x_t$ is cumulative
capacity in the investment interval $t$. Thus, $x_0$ is the initial cumulative CSP capacity.
Additionally, there are **nuclear** and **coal** generators for which there is no potential for reducing their LCOE.
We build an optimisation to minimise the cost of supplying a flat demand $d=100$ with the given technologies between 2020 and 2050, where a CO$_2$ budget cap is applied.
> **Hint:** Problem formulation is to be found further along this notebook.
**Task:** Explore different discount rates, learning rates, CO$_2$ budgets. For instance
* No learning for CSP and no CO$_2$ budget would result in a coal-reliant system.
* A CO$_2$ budget and no learning prefers a system built on nuclear.
* A CO$_2$ budget and learning results in a system with CSP.
%% Cell type:markdown id: tags:
***
## Imports
%% Cell type:code id: tags:
``` python
from pyomo.environ import ConcreteModel, Var, Objective, NonNegativeReals, Constraint, Suffix, exp
from pyomo.opt import SolverFactory
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('bmh')
%matplotlib inline
```
%% Cell type:markdown id: tags:
## Parameters
%% Cell type:code id: tags:
``` python
techs = ["coal","nuclear","CSP"]
colors = ["#707070","#ff9000","#f9d002"]
parameters = pd.DataFrame(data=[[50.,100.,150.], # LCOE EUR/MWh_el
[1.,0.,0.], # emissions tCO2/MWh_el
[50.,100.,35.], # LCOE long-term potential EUR/MWh_el
[1e6,1e6,200]], # Volume in GW until (today - base) LCOE reduces by 1/e
index=["LCOE","emissions","base LCOE","volume"],
columns=techs)
parameters = pd.DataFrame(data=[[50.,100.,150.,"LCOE EUR/MWh_el"],
[1.,0.,0., "tCO2/MWh_el"],
[50.,100.,35., "EUR/MWh_el"],
[1e6,1e6,200,"GW"]],
index=["current LCOE","specific emissions","potential LCOE","current volume"],
columns=techs+["unit"])
parameters
```
%%%% Output: execute_result
coal nuclear CSP
LCOE 50.0 100.0 150.0
emissions 1.0 0.0 0.0
base LCOE 50.0 100.0 35.0
volume 1000000.0 1000000.0 200.0
coal nuclear CSP unit
current LCOE 50.0 100.0 150.0 LCOE EUR/MWh_el
specific emissions 1.0 0.0 0.0 tCO2/MWh_el
potential LCOE 50.0 100.0 35.0 EUR/MWh_el
current volume 1000000.0 1000000.0 200.0 GW
%% Cell type:code id: tags:
``` python
#discount rate
rate = 0.05
#demand in GW
demand = 100.
years = list(range(2021,2050))
#learning rate of CSP
gamma_csp = 0.4
# carbon budget in average tCO2/MWh_el
co2_budget = 0.2
# considered years
years = list(range(2020,2050))
```
%% Cell type:markdown id: tags:
## Build Model
> **Note:** We use [`pyomo`](https://pyomo.readthedocs.io/en/stable/) for building optimisation problems in python. This is also what `pypsa` uses under the hood.
%% Cell type:code id: tags:
``` python
model = ConcreteModel("discounted total costs")
```
%% Cell type:markdown id: tags:
$$G_{t,a}$$
%% Cell type:code id: tags:
``` python
model.generators = Var(techs, years, within=NonNegativeReals)
```
%% Cell type:markdown id: tags:
$$LCOE_{t,a}$$
%% Cell type:code id: tags:
``` python
model.costs = Var(techs, years, within=NonNegativeReals)
```
%% Cell type:markdown id: tags:
The objective is to minimise the system costs:
$$\min \quad \sum_{t\in T, a\in A} G_{t,a}\cdot LCOE_{t,a} \cdot \frac{8760}{10^6\cdot (1+r)^{t}}$$
%% Cell type:code id: tags:
``` python
# in billion EUR
model.objective = Objective(expr=sum(model.generators[tech,year]*model.costs[tech,year]*8760/1e6/(1+rate)**(year-years[0])
for year in years
for tech in techs))
```
%% Cell type:markdown id: tags:
Add a constraint such that demand is met by generator dispatch:
$$\forall a\in A: \quad d = \sum_{t \in T} G_{t,a}$$
%% Cell type:code id: tags:
``` python
def balance_constraint(model, year):
return demand == sum(model.generators[tech,year] for tech in techs)
model.balance_constraint = Constraint(years, rule=balance_constraint)
```
%% Cell type:markdown id: tags:
Add a constraint on carbon dioxide emissions:
$$\sum_{t\in T, a\in A} G_{t,a} \cdot e_{t} \leq \hat{e} \cdot |A| \cdot d$$
%% Cell type:code id: tags:
``` python
def co2_constraint(model):
return 0.2*30*demand >= sum(model.generators[tech,year]*parameters.at["emissions",tech] for tech in techs for year in years)
return co2_budget*len(years)*demand >= sum(model.generators[tech,year]*parameters.at["specific emissions",tech] for tech in techs for year in years)
model.co2_constraint = Constraint(rule=co2_constraint)
```
%% Cell type:code id: tags:
``` python
def cost_constraint(model,tech,year):
def lcoe_constraint(model,tech,year):
if tech != "CSP":
return model.costs[tech,year] == parameters.at["LCOE",tech]
return model.costs[tech,year] == parameters.at["current LCOE",tech]
else:
#return model.costs[tech,year] == parameters.at["base LCOE",tech] \
# + (parameters.at["LCOE",tech] - parameters.at["base LCOE",tech])*exp(-sum(model.generators[tech,yeart] for yeart in years if yeart < year)/parameters.at["volume",tech])
return model.costs[tech,year] == parameters.at["LCOE",tech]*(1+sum(model.generators[tech,yeart] for yeart in years if yeart < year))**(-0.4)
model.cost_constraint = Constraint(techs, years, rule=cost_constraint)
return model.costs[tech,year] == parameters.at["current LCOE",tech]*(1+sum(model.generators[tech,yeart] for yeart in years if yeart < year))**(-gamma_csp)
model.lcoe_constraint = Constraint(techs, years, rule=lcoe_constraint)
```
%% Cell type:code id: tags:
%% Cell type:markdown id: tags:
``` python
# in billion EUR
model.objective = Objective(expr=sum(model.generators[tech,year]*model.costs[tech,year]*8760/1e6/(1+rate)**(year-2021)
for year in years
for tech in techs))
```
> **Hint:** You can print the model formulation with `model.pprint()`
%% Cell type:markdown id: tags:
## Solve Model
%% Cell type:code id: tags:
``` python
opt = SolverFactory("ipopt")
```
%% Cell type:code id: tags:
``` python
results = opt.solve(model,suffixes=["dual"],keepfiles=False)
```
%% Cell type:markdown id: tags:
## Results
%% Cell type:markdown id: tags:
Optimised cost:
%% Cell type:code id: tags:
``` python
print(model.objective())
```
%%%% Output: stream
230.3039488909157
231.63436487305015
%% Cell type:markdown id: tags:
The unoptimized cost (where everything is supplied by coal) is:
%% Cell type:code id: tags:
``` python
print(8760*demand*parameters.at["LCOE","coal"]*len(years)/1e6)
print(8760*demand*parameters.at["current LCOE","coal"]*len(years)/1e6)
```
%%%% Output: stream
1270.2
1314.0
%% Cell type:markdown id: tags:
Plotting the development of the technology mix of the optimal solution over time:
%% Cell type:code id: tags:
``` python
capacities = pd.DataFrame(0.,index=years,columns=techs)
for year in years:
for tech in techs:
capacities.at[year,tech] = model.generators[tech,year].value
```
%% Cell type:code id: tags:
``` python
fig, ax = plt.subplots()
fig.set_size_inches((10,6))
capacities.plot(kind="area",stacked=True,color=colors,ax=ax)
ax.set_xlabel("year")
ax.set_ylabel("capacity [GW]")
```
%%%% Output: execute_result
Text(0, 0.5, 'capacity [GW]')
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id: tags:
Plotting the development of the costs of the technology over time:
%% Cell type:code id: tags:
``` python
costs = pd.DataFrame(0.,index=years,columns=techs)
for year in years:
for tech in techs:
costs.at[year,tech] = model.costs[tech,year].value
```
%% Cell type:code id: tags:
``` python
fig, ax = plt.subplots()
fig.set_size_inches((10,6))
costs.plot(color=colors,ax=ax,linewidth=3)
ax.set_xlabel("year")
ax.set_ylabel("capacity [GW]")
ax.set_ylabel("costs [billion EUR]")
ax.set_ylim([0,160])
```
%%%% Output: execute_result
(0, 160)
%%%% Output: display_data
![]()
![]()
%% Cell type:code id: tags:
``` python
```
......
%% Cell type:markdown id: tags:
# First optimise investments
# Tutorial VI.2
Let us consider a myopic dispatch problem that is solved with three different approaches:
1. [Investments are optimised for a single node.](#one)
2. [Each hour is optimised sequentially without foresight.](#two)
3. [No optimisation is used at all, just a merit order curve is used.](#three)
To simulate the available renewable energy we use data from [renewables.ninja](https://renewables.ninja)
**Task:** Take optimal investments and do dispatch without foresight and
without optimisation, winner is solution with least load-shedding.
%% Cell type:markdown id: tags:
***
<a id='one'></a>
# Investment optimisation for a single node
%% Cell type:code id: tags:
``` python
import urllib.request as dl
import os
import logging
logging.basicConfig(level=logging.ERROR)
import pypsa
import pandas as pd
from pyomo.environ import Constraint
import json
import xarray as xr
import matplotlib.pyplot as plt
plt.style.use('bmh')
%matplotlib inline
```
%% Cell type:code id: tags:
``` python
weather_dir = "../whobs-server/data/"
files = ['ninja_pv_europe_v1.1_sarah.nc',
'ninja_wind_europe_v1.1_current_on-offshore.nc']
url_base = "https://model.energy/data/"
for f in files:
if not os.path.isfile(f):
print("Download file: {}".format(f))
dl.urlretrieve(url_base+f, f)
else:
print("No need to download file: {}".format(f))
```
%%%% Output: stream
No need to download file: ninja_pv_europe_v1.1_sarah.nc
No need to download file: ninja_wind_europe_v1.1_current_on-offshore.nc
%% Cell type:code id: tags:
``` python
#read in renewables.ninja solar time series
solar_pu = xr.open_dataset(weather_dir + 'ninja_pv_europe_v1.1_sarah.nc')
solar_pu = xr.open_dataset('ninja_pv_europe_v1.1_sarah.nc')
#read in renewables.ninja wind time series
wind_pu = xr.open_dataset(weather_dir + 'ninja_wind_europe_v1.1_current_on-offshore.nc')
wind_pu = xr.open_dataset('ninja_wind_europe_v1.1_current_on-offshore.nc')
def annuity(lifetime,rate):
if rate == 0.:
return 1/lifetime
else:
return rate/(1. - 1. / (1. + rate)**lifetime)
```
%%%% Output: error
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
~/software/anaconda3/envs/esm-tutorials/lib/python3.7/site-packages/xarray/backends/file_manager.py in acquire(self, needs_lock)
166 try:
--> 167 file = self._cache[self._key]
168 except KeyError:
~/software/anaconda3/envs/esm-tutorials/lib/python3.7/site-packages/xarray/backends/lru_cache.py in __getitem__(self, key)
41 with self._lock:
---> 42 value = self._cache[key]
43 self._cache.move_to_end(key)
KeyError: [<function _open_netcdf4_group at 0x7fa84cce60d0>, ('/home/ws/sp2668/bwSyncAndShare/teaching/whobs-server/data/ninja_pv_europe_v1.1_sarah.nc', CombinedLock([<unlocked _thread.lock object at 0x7fa84cd35f80>, <unlocked _thread.lock object at 0x7fa84cd35f58>])), 'r', (('clobber', True), ('diskless', False), ('format', 'NETCDF4'), ('group', None), ('persist', False))]
During handling of the above exception, another exception occurred:
FileNotFoundError Traceback (most recent call last)
<ipython-input-2-77803472364e> in <module>
2
3 #read in renewables.ninja solar time series
----> 4 solar_pu = xr.open_dataset(weather_dir + 'ninja_pv_europe_v1.1_sarah.nc')
5
6 #read in renewables.ninja wind time series
~/software/anaconda3/envs/esm-tutorials/lib/python3.7/site-packages/xarray/backends/api.py in open_dataset(filename_or_obj, group, decode_cf, mask_and_scale, decode_times, autoclose, concat_characters, decode_coords, engine, chunks, lock, cache, drop_variables, backend_kwargs, use_cftime)
361 if engine == 'netcdf4':
362 store = backends.NetCDF4DataStore.open(
--> 363 filename_or_obj, group=group, lock=lock, **backend_kwargs)
364 elif engine == 'scipy':
365 store = backends.ScipyDataStore(filename_or_obj, **backend_kwargs)
~/software/anaconda3/envs/esm-tutorials/lib/python3.7/site-packages/xarray/backends/netCDF4_.py in open(cls, filename, mode, format, group, clobber, diskless, persist, lock, lock_maker, autoclose)
350 kwargs=dict(group=group, clobber=clobber, diskless=diskless,
351 persist=persist, format=format))
--> 352 return cls(manager, lock=lock, autoclose=autoclose)
353
354 @property
~/software/anaconda3/envs/esm-tutorials/lib/python3.7/site-packages/xarray/backends/netCDF4_.py in __init__(self, manager, lock, autoclose)
309
310 self._manager = manager
--> 311 self.format = self.ds.data_model
312 self._filename = self.ds.filepath()
313 self.is_remote = is_remote_uri(self._filename)
~/software/anaconda3/envs/esm-tutorials/lib/python3.7/site-packages/xarray/backends/netCDF4_.py in ds(self)
354 @property
355 def ds(self):
--> 356 return self._manager.acquire().value
357
358 def open_store_variable(self, name, var):
~/software/anaconda3/envs/esm-tutorials/lib/python3.7/site-packages/xarray/backends/file_manager.py in acquire(self, needs_lock)
171 kwargs = kwargs.copy()
172 kwargs['mode'] = self._mode
--> 173 file = self._opener(*self._args, **kwargs)
174 if self._mode == 'w':
175 # ensure file doesn't get overriden when opened again
~/software/anaconda3/envs/esm-tutorials/lib/python3.7/site-packages/xarray/backends/netCDF4_.py in _open_netcdf4_group(filename, lock, mode, group, **kwargs)
242 import netCDF4 as nc4
243
--> 244 ds = nc4.Dataset(filename, mode=mode, **kwargs)
245
246 with close_on_error(ds):
netCDF4/_netCDF4.pyx in netCDF4._netCDF4.Dataset.__init__()
netCDF4/_netCDF4.pyx in netCDF4._netCDF4._ensure_nc_success()
FileNotFoundError: [Errno 2] No such file or directory: b'/home/ws/sp2668/bwSyncAndShare/teaching/whobs-server/data/ninja_pv_europe_v1.1_sarah.nc'
%% Cell type:code id: tags:
``` python
assumptions_df = pd.DataFrame(columns=["FOM","fixed","discount rate","lifetime","investment","efficiency"],
index=["wind","solar","hydrogen_electrolyser","hydrogen_turbine","hydrogen_energy",
"battery_power","battery_energy"],
dtype=float)
assumptions_df["lifetime"] = 25.
assumptions_df.at["hydrogen_electrolyser","lifetime"] = 20.
assumptions_df.at["battery_power","lifetime"] = 15.
assumptions_df.at["battery_energy","lifetime"] = 15.
assumptions_df["discount rate"] = 0.05
assumptions_df["FOM"] = 3.
assumptions_df["efficiency"] = 1.
assumptions_df.at["battery_power","efficiency"] = 0.9
```
%% Cell type:code id: tags:
``` python
assumptions = {"wind" : True,
"solar" : True,
"battery" : True,
"hydrogen" : True,
"load" : 100,
"wind_cost": 1182,
"solar_cost" : 600,
"battery_energy_cost" : 100,
"battery_power_cost" : 100,
"hydrogen_electrolyser_cost" : 750,
"hydrogen_energy_cost" : 0.5,
"hydrogen_electrolyser_efficiency" : 80,
"hydrogen_turbine_cost" : 800,
"hydrogen_turbine_efficiency" : 60,
"discount_rate" : 0.05,
"hydrogen_energy_cost" : 0.5,
"hydrogen_electrolyser_efficiency" : 80,
"hydrogen_turbine_cost" : 800,
"hydrogen_turbine_efficiency" : 60,
"discount_rate" : 0.05,
"frequency" : 3,
"year" : 2011,
"country" : "GB"}
```
%% Cell type:code id: tags:
``` python
booleans = ["wind","solar","battery","hydrogen"]
floats = ["load","wind_cost","solar_cost","battery_energy_cost",
"battery_power_cost","hydrogen_electrolyser_cost",
"hydrogen_energy_cost",
"hydrogen_electrolyser_efficiency",
"hydrogen_turbine_cost",
"hydrogen_turbine_efficiency",
"discount_rate"]
threshold = 0.1
def error(message, jobid):
with open('results-solve/results-{}.json'.format(jobid), 'w') as fp:
json.dump({"jobid" : jobid,