Commit a0b011e3 by Fabian Neumann

### tutorial-3: minor corrections in solution

parent 8e12ab8d
 ... ... @@ -123,8 +123,8 @@ \end{axis} \end{tikzpicture} \caption{Diurnal and synoptic variations of wind and solar power generation $$G^{N}_{w}(t)$$ \autoref{figref:w} and $$G^{S}_{s}(t)$$ $$g^{N}_{w}(t)$$ \autoref{figref:w} and $$g^{S}_{s}(t)$$ \autoref{figref:s}, and a constant load (all in per-unit) $$L(t)$$ \autoref{figref:l}.} \label{fig:variations} ... ...
No preview for this file type
 ... ... @@ -122,8 +122,8 @@ \end{axis} \end{tikzpicture} \caption{Diurnal and synoptic variations of wind and solar power generation $$G^{N}_{w}(t)$$ \autoref{figref:w} and $$G^{S}_{s}(t)$$ $$g^{N}_{w}(t)$$ \autoref{figref:w} and $$g^{S}_{s}(t)$$ \autoref{figref:s}, and a constant load (all in per-unit) $$L(t)$$ \autoref{figref:l}.} \label{fig:variations} ... ... @@ -180,15 +180,15 @@ For now, assume no power exchange between the regions and that the stores are lo G_{s,storage,dispatch}^N & = \max ( \pm \Delta^N(t)) \\ & = \max (\pm [L^N(t) - G^N_w \cdot g^N_w(t)]) \\ & = \max (\pm [L^N(t) - \frac{A^N_l}{c_w}\cdot c_w\cdot (1+A_w \sin \omega_w t)]) \\ & = \max (\pm [L^N(t) - A^N_l + A^N_l A_w \sin \omega_w t)]) \\ & = \max (\pm [A^N_l A_w \sin \omega_w t)]) \\ & = \max (\pm [L^N(t) - A^N_l - A^N_l A_w \sin \omega_w t)]) \\ & = \max (\pm [-A^N_l A_w \sin \omega_w t)]) \\ & = A^N_l A_w = 0.9 \cdot 20 \si{\giga\watt} = 18 \si{\giga\watt} \end{align*} In the South: \begin{align*} G_{s,storage,dispatch}^S & = \max ( \pm g_s^S(t)) \\ G_{s,storage,dispatch}^S & = \max ( \pm \Delta^S(t)) \\ & = \max (\pm [L^S(t) - G^S_s \cdot g^S_s(t)]) \\ & = \max (\pm [L^S(t) - \frac{A^S_l}{c_s}\cdot c_s\cdot (1+A_s \sin \omega_s t)]) \\ & = \max (\pm [L^S(t) - A^S_l + A^S_l A_s \sin \omega_s t)]) \\ ... ... @@ -219,7 +219,7 @@ For now, assume no power exchange between the regions and that the stores are lo In the South: \begin{align*} e_{st}^S(t) & = \int_{0}^{t} -g_s^S(t') \;\mathrm{d}t' = \int_{0}^{t} A^S_l A_s \sin \omega_s t' \;\mathrm{d}t' \\ e_{st}^S(t) & = \int_{0}^{t} -\Delta^S(t') \;\mathrm{d}t' = \int_{0}^{t} A^S_l A_s \sin \omega_s t' \;\mathrm{d}t' \\ & = A^S_l A_s \frac{-\cos(\omega_s t')}{\omega_s}\Big|_0^t = A^S_l A_s \frac{1-\cos(\omega_s t')}{\omega_s} \end{align*} ... ... @@ -271,7 +271,7 @@ For now, assume no power exchange between the regions and that the stores are lo The minimal (lossless) corresponding cost to supply constant demand by using hydrogen as storage technology are \begin{align*} P_h^S & = 1200 \text{\EUR{}}\si{\per\kilo\watt} \cdot G_{storage,dispatch}^S + 10 \text{\EUR{}/kWh} \cdot E_{st}^S \\ P_h^S & = 750 \text{\EUR{}}\si{\per\kilo\watt} \cdot G_{storage,dispatch}^S + 10 \text{\EUR{}/kWh} \cdot E_{st}^S \\ & = 22.5 \cdot 10^9 \eur + 2.3 \cdot 10^9 \eur \\ & = 24.8 \cdot 10^9 \eur \end{align*} ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!