diff --git a/tutorial-1/sheet01.pdf b/tutorial-1/sheet01.pdf index b6bf8ad19ace964c761e6dcb4eae9571c7bbf054..7c734476c0902d51641dcd7b7574e2ec3ae251e0 100755 Binary files a/tutorial-1/sheet01.pdf and b/tutorial-1/sheet01.pdf differ diff --git a/tutorial-1/sheet01.tex b/tutorial-1/sheet01.tex index 18ca6c1ad99f28cd11ef12bfa2557d643a2aca42..44946152dfc4db017a87a225e15bc15d84b28f98 100755 --- a/tutorial-1/sheet01.tex +++ b/tutorial-1/sheet01.tex @@ -70,7 +70,7 @@ \begin{center} \textbf{\Large Energy System Modelling }\\ {SS 2018, Karlsruhe Institute of Technology}\\ - {Institute of Automation and Applied Informatics}\\ [1em] + {Institute for Automation and Applied Informatics}\\ [1em] \textbf{\textsc{\Large Tutorial I: Time Series Analysis}}\\ \small Will be worked on in the exercise session on Wednesday, 11 July 2018.\\[1.5em] \end{center} @@ -82,7 +82,7 @@ %===================================================================== The following data are made available to you on the course home -page\footnote{\url{https://nworbmot.org/courses/complex_renewable_energy_networks/}}: +page\footnote{\url{https://nworbmot.org/courses/esm-2018/}}: \begin{verbatim} de_data.csv, gb_data.csv, eu_data.csv, (wind.csv, solar.csv, load.csv). \end{verbatim} @@ -161,7 +161,7 @@ The time series are normalized to \begin{enumerate}[(a)] \item What is the seasonal optimal mix $$\alpha$$, which minimizes \begin{equation*} - \expect{\left[ \alpha W(\cdot) + (1-\alpha) S(\cdot) - L(\cdot) \right]^2} = \frac1T \int_0^T \left[ \alpha W(t) + (1-\alpha) S(t) - L(t) \right]^2 \,\mathrm d t + \expect{\left[ \alpha W(t) + (1-\alpha) S(t) - L(t) \right]^2} = \frac1T \int_0^T \left[ \alpha W(t) + (1-\alpha) S(t) - L(t) \right]^2 \,\mathrm d t , \end{equation*} \item How does the optimal mix change if we replace $$A_L \to -A_L$$? @@ -172,10 +172,10 @@ The time series are normalized to \end{equation*} Express the optimal mix $$\alpha$$ as a function of $$\phi$$. \item A constant conventional power source $$C(t) = 1 - \gamma$$ is now introduced. The mismatch then becomes - $$+ \begin{equation*} \Delta(t) = \gamma \left[ \alpha W(t) + (1-\alpha) S(t) \right] + C(t) - L(t) . -$$ + \end{equation*} Analogously to (a), find the optimal mix $$\alpha$$ as a function of $$0 \leq \gamma \leq 1$$, which minimizes $$\expect{\Delta^2}$$. \end{enumerate} diff --git a/tutorial-2/sheet02.pdf b/tutorial-2/sheet02.pdf index e6d0a711e39743febf563f1ed78bba8d470bab4c..e738811ca5e8c7e6b18998b65a7465fbf0e76ddc 100755 Binary files a/tutorial-2/sheet02.pdf and b/tutorial-2/sheet02.pdf differ diff --git a/tutorial-2/sheet02.tex b/tutorial-2/sheet02.tex index 1c37041041999742d3fc9747294c176e2561013c..fc9621d57f77c8331d63e3c3d47b1d1e51d51253 100755 --- a/tutorial-2/sheet02.tex +++ b/tutorial-2/sheet02.tex @@ -73,7 +73,7 @@ \begin{center} \textbf{\Large Energy System Modelling }\\ {SS 2018, Karlsruhe Institute of Technology}\\ - {Institute of Automation and Applied Informatics}\\ [1em] + {Institute for Automation and Applied Informatics}\\ [1em] \textbf{\textsc{\Large Tutorial II: Network Theory and Power Flow}}\\ \small Will be worked on in the exercise session on Friday, 13 July 2018.\\[1.5em] \end{center} @@ -124,7 +124,7 @@ Consider the simple network shown ins Figure \ref{fig:network}. Calculate in Pyt -If you map the nodes to countries like \texttt{0=DK, 1=DE, 2=CH, 3=IT, 4=AT,5=CZ} the network in Figure \ref{fig:network} represents a small part of the European electricity network (albeit very simplified). On the course homepage\footnote{\url{https://nworbmot.org/courses/complex_renewable_energy_networks/}}, you can find the \textit{power imbalance} time series for the six countries for January 2017 in hourly MW in the file \texttt{imbalance.csv}. They have been derived from physical flows as published by ENTSO-E.\footnote{\url{https://transparency.entsoe.eu/transmission-domain/physicalFlow/show}}\\ +If you map the nodes to countries like \texttt{0=DK, 1=DE, 2=CH, 3=IT, 4=AT,5=CZ} the network in Figure \ref{fig:network} represents a small part of the European electricity network (albeit very simplified). On the course homepage\footnote{\url{https://nworbmot.org/courses/esm-2018/}}, you can find the \textit{power imbalance} time series for the six countries for January 2017 in hourly MW in the file \texttt{imbalance.csv}. They have been derived from physical flows as published by ENTSO-E.\footnote{\url{https://transparency.entsoe.eu/transmission-domain/physicalFlow/show}}\\ The linear power flow is given by diff --git a/tutorial-3/sheet03.pdf b/tutorial-3/sheet03.pdf index 7b9b4d5bd1b0d1c9aaddb118160348835fd6bc3f..e87a1d1b0b0fb0e5ab757d0d5da2c012a489ff2f 100755 Binary files a/tutorial-3/sheet03.pdf and b/tutorial-3/sheet03.pdf differ diff --git a/tutorial-3/sheet03.tex b/tutorial-3/sheet03.tex index 4ad077f28527f77582091ce8124a0da3080f7bbc..6b647993e0c2ef6b6f9608566db460b4cef7e8c7 100755 --- a/tutorial-3/sheet03.tex +++ b/tutorial-3/sheet03.tex @@ -89,7 +89,7 @@ \begin{center} \textbf{\Large Energy System Modelling }\\ {SS 2018, Karlsruhe Institute of Technology}\\ - {Institute of Automation and Applied Informatics}\\ [1em] + {Institute for Automation and Applied Informatics}\\ [1em] \textbf{\textsc{\Large Tutorial III: Storage Optimisation}}\\ \small Will be worked on in the exercise session on Monday, 16 July 2018.\\[1.5em] \end{center} @@ -97,7 +97,7 @@ \vspace{.5em} %=============== ====================================================== -\paragraph{Problem III.1 \normalsize (storage adequacy).}~\\ +\paragraph{Problem III.1 \normalsize (storage adequacy without losses).}~\\ %===================================================================== \begin{wrapfigure}[11]{r}{0pt} @@ -183,7 +183,7 @@ Now we lift the restriction against transmission and allow them to bridge their \end{table} %=============== ====================================================== -\paragraph{Problem III.2 \normalsize (storage optimization with PyPSA).}~\\ +\paragraph{Problem III.2 \normalsize (storage optimization with PyPSA and losses).}~\\ %===================================================================== Python for Power System Analysis (PyPSA) is a free software toolbox for optimising modern power systems that include features such as variable wind and solar generation, storage units, etc\.. Use the toolbox to extend on your findings in Problem III.1. @@ -194,6 +194,6 @@ Python for Power System Analysis (PyPSA) is a free software toolbox for optimisi \item Run an investment optimization by calling the \texttt{lopf} function. \item How do your results \texttt{objective} and \texttt{{generators,stores,links}.p\_nom\_opt} compare with the results of III.1(d)? \item Now lift the restriction against transmission and allow North and South to bridge their 500 km separation with a transmission line. How does the cost optimal technology mix change compared to III.1(f)? - \item Replace the approximated availability time-series of the wind and the solar generators with the ones from \texttt{availability.csv} computed from reanalysis weather data available on the course homepage\footnote{\url{https://nworbmot.org/courses/complex_renewable_energy_networks/}} and re-run the LOPF. Compare the results! Explain the differences by looking at the cumulative variations relative to the mean of the availability time-series! + \item Replace the approximated availability time-series of the wind and the solar generators with the ones from \texttt{availability.csv} computed from reanalysis weather data available on the course homepage\footnote{\url{https://nworbmot.org/courses/esm-2018/}} and re-run the LOPF. Compare the results! Explain the differences by looking at the cumulative variations relative to the mean of the availability time-series! \end{enumerate} \end{document} diff --git a/tutorial-3/solution03.pdf b/tutorial-3/solution03.pdf index 4f0d56e61640c0427b990d5adaacaca46a0fd951..bc81449fb399e43dfbd4d78004c20b923cc8c2a8 100755 Binary files a/tutorial-3/solution03.pdf and b/tutorial-3/solution03.pdf differ diff --git a/tutorial-3/solution03.tex b/tutorial-3/solution03.tex index 20339e2111a7a016a636fe9407de098961f0e12f..2e796d5ecf7dbcb98617d87df73b11cbe8068901 100755 --- a/tutorial-3/solution03.tex +++ b/tutorial-3/solution03.tex @@ -88,7 +88,7 @@ \begin{center} \textbf{\Large Energy System Modelling }\\ {SS 2018, Karlsruhe Institute of Technology}\\ - {Institute of Automation and Applied Informatics}\\ [1em] + {Institute for Automation and Applied Informatics}\\ [1em] \textbf{\textsc{\Large Solutions to Tutorial III}}\\ \small Will be worked on in the exercise session on Monday, 16 July 2018.\\[1.5em] \end{center} @@ -288,9 +288,9 @@ For now, assume the stores are lossless. Losses will be considered in III.2. Without taking losses into account, both regions should choose hydrogen storages. Overall, the North can provide electricity at a lower rate than the South: - $$\tilde{P}_{w+h}^N = \frac{104 \cdot 10^9 \eur}{20 \si{\giga\watt}} = 5 \cdot 10^9 \eur \si{\per\giga\watt}$$ + $$P_{w+h}^N = \frac{104 \cdot 10^9 \eur}{20 \si{\giga\watt}} = 5 \cdot 10^9 \eur \si{\per\giga\watt}$$ - $$\tilde{P}_{s+h}^S = \frac{175 \cdot 10^9 \eur}{30 \si{\giga\watt}} = 6 \cdot 10^9 \eur \si{\per\giga\watt}$$ + $$P_{s+h}^S = \frac{175 \cdot 10^9 \eur}{30 \si{\giga\watt}} = 6 \cdot 10^9 \eur \si{\per\giga\watt}$$ % (e) \begin{shaded} @@ -302,16 +302,16 @@ For now, assume the stores are lossless. Losses will be considered in III.2. % (f) \begin{shaded}\item Now we lift the restriction against transmission and allow them to bridge their 500 km separation with a transmission line. Estimate the cost-optimal technology mix by assuming wind energy in the North is only stored in the North and solar energy in the South is likewise only stored in the South! What would happen if you dropped that assumption?\end{shaded} - Because $\tilde{P}_{w+h}^N < \tilde{P}_{w+h}^S$ there will be energy exports from North to South: + Because $P_{w+h}^N < P_{w+h}^S$ there will be energy exports from North to South: $$E^N > E^S \quad \text{and} \quad E^N + E^S = 50 \si{\giga\watt}$$ The total price of electricity is given by \begin{align*} - P_{tot} & =\frac{ E^N \cdot \tilde{P}_{w+h}^N + E^S \cdot \tilde{P}_{s+h}^S + (E^N - E^S)\cdot 200 \eur\si{\per\kilo\watt}}{E^N + E^S} \\ - & = \frac{E^N \cdot \tilde{P}_{w+h}^N + (50\si{\giga\watt} - E^N) \cdot \tilde{P}_{s+h}^S + (2E^N - 50\si{\giga\watt})\cdot 200 \eur\si{\per\kilo\watt}}{E^N + E^S} \\ - & = \frac{E^N (\tilde{P}_{w+h}^N - \tilde{P}_{s+h}^S + 400 \eur \si{\per\kilo\watt}) + 50 \si{\giga\watt} (\tilde{P}_{s+h}^S - 200 \eur \si{\per\kilo\watt})}{E^N + E^S} \\ + P_{tot} & =\frac{ E^N \cdot P_{w+h}^N + E^S \cdot P_{s+h}^S + (E^N - E^S)\cdot 200 \eur\si{\per\kilo\watt}}{E^N + E^S} \\ + & = \frac{E^N \cdot P_{w+h}^N + (50\si{\giga\watt} - E^N) \cdot P_{s+h}^S + (2E^N - 50\si{\giga\watt})\cdot 200 \eur\si{\per\kilo\watt}}{E^N + E^S} \\ + & = \frac{E^N (P_{w+h}^N - P_{s+h}^S + 400 \eur \si{\per\kilo\watt}) + 50 \si{\giga\watt} (P_{s+h}^S - 200 \eur \si{\per\kilo\watt})}{E^N + E^S} \\ \end{align*} Now, minimising the term for a choice of $E^N$ will yield @@ -330,11 +330,17 @@ For now, assume the stores are lossless. Losses will be considered in III.2. Compared to the weighted electricity cost of North and South without transmission \begin{align*} - \min \tilde{P}_{tot} & = \frac{20\si{\giga\watt}\cdot 5 \cdot 10^9 \eur \si{\per\giga\watt} + 30\si{\giga\watt}\cdot 6 \cdot 10^9 \eur \si{\per\giga\watt}}{50 \si{\giga\watt}} \\ + \min P_{tot} & = \frac{20\si{\giga\watt}\cdot 5 \cdot 10^9 \eur \si{\per\giga\watt} + 30\si{\giga\watt}\cdot 6 \cdot 10^9 \eur \si{\per\giga\watt}}{50 \si{\giga\watt}} \\ & = \frac{280 \cdot 10^9 \eur}{50 \si{\giga\watt}} = 5.6 \cdot 10^9 \eur \si{\per\giga\watt} \end{align*} the system cost could be reduced by approx.\ 7 \%. + + %=============== ====================================================== + \paragraph{Solution III.2 \normalsize (storage optimisation with PyPSA).}~\\ + %===================================================================== + + cf. Jupyter Notebook \end{enumerate} diff --git a/tutorial-4/sheet04.pdf b/tutorial-4/sheet04.pdf index 92c2ca237f6159f848153c525f416a82d3bd4311..43732779880918752f98b29787da2b92dad2f817 100755 Binary files a/tutorial-4/sheet04.pdf and b/tutorial-4/sheet04.pdf differ diff --git a/tutorial-4/sheet04.tex b/tutorial-4/sheet04.tex index a97224e5373225fdf982b87805231acba2bc6c61..1d7754d85107b374e87627678a5197a173a38aeb 100755 --- a/tutorial-4/sheet04.tex +++ b/tutorial-4/sheet04.tex @@ -104,7 +104,7 @@ \begin{center} \textbf{\Large Energy System Modelling }\\ {SS 2018, Karlsruhe Institute of Technology}\\ - {Institute of Automation and Applied Informatics}\\ [1em] + {Institute for Automation and Applied Informatics}\\ [1em] \textbf{\textsc{\Large Tutorial IV: Electricity Markets}}\\ \small Will be worked on in the exercise session on Tuesday, 17 July 2018.\\[1.5em] \end{center} @@ -180,7 +180,7 @@ Assume that the demand $D_*$ is constant and insensitive to price, that energy i \end{enumerate} %=============== ====================================================== -\paragraph{Problem IV.4 \normalsize (bidding in africa with pypsa).}~\\ +% d\paragraph{Problem IV.4 \normalsize (bidding in africa with pypsa).}~\\ %===================================================================== diff --git a/tutorial-4/solution.tex b/tutorial-4/solution.tex new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/tutorial-4/solution04.pdf b/tutorial-4/solution04.pdf index d6731f6c354e150011a9951ac6b13dc137e0ab4a..f5088421cb60f8dd702b3f3806cb4dec5032a860 100755 Binary files a/tutorial-4/solution04.pdf and b/tutorial-4/solution04.pdf differ diff --git a/tutorial-4/solution04.tex b/tutorial-4/solution04.tex index 24adca5f6adfd5f527dd4a641fa57e1f4d950731..994c72513d07c156285cbbc4232cf5ecc0891af4 100755 --- a/tutorial-4/solution04.tex +++ b/tutorial-4/solution04.tex @@ -105,7 +105,7 @@ \begin{center} \textbf{\Large Energy System Modelling }\\ {SS 2018, Karlsruhe Institute of Technology}\\ - {Institute of Automation and Applied Informatics}\\ [1em] + {Institute for Automation and Applied Informatics}\\ [1em] \textbf{\textsc{\Large Solution IV: Electricity Markets}}\\ \small Will be worked on in the exercise session on Tuesday, 17 July 2018.\\[1.5em] \end{center} @@ -303,7 +303,7 @@ Assume that the demand $D_*$ is constant and insensitive to price, that energy i \end{enumerate} %=============== ====================================================== -\paragraph{Solution IV.4 \normalsize (bidding in africa with pypsa).}~\\ +%\paragraph{Solution IV.4 \normalsize (bidding in africa with pypsa).}~\\ %===================================================================== diff --git a/tutorial-5/network_full/buses.csv b/tutorial-5/network_backup/buses.csv similarity index 100% rename from tutorial-5/network_full/buses.csv rename to tutorial-5/network_backup/buses.csv diff --git a/tutorial-5/network_orig/generators-p_max_pu.csv b/tutorial-5/network_backup/generators-p_max_pu.csv similarity index 100% rename from tutorial-5/network_orig/generators-p_max_pu.csv rename to tutorial-5/network_backup/generators-p_max_pu.csv diff --git a/tutorial-5/network_full/generators.csv b/tutorial-5/network_backup/generators.csv similarity index 100% rename from tutorial-5/network_full/generators.csv rename to tutorial-5/network_backup/generators.csv diff --git a/tutorial-5/network_full/lines.csv b/tutorial-5/network_backup/lines.csv similarity index 100% rename from tutorial-5/network_full/lines.csv rename to tutorial-5/network_backup/lines.csv diff --git a/tutorial-5/network_orig/loads-p_set.csv b/tutorial-5/network_backup/loads-p_set.csv similarity index 100% rename from tutorial-5/network_orig/loads-p_set.csv rename to tutorial-5/network_backup/loads-p_set.csv diff --git a/tutorial-5/network_full/loads.csv b/tutorial-5/network_backup/loads.csv similarity index 100% rename from tutorial-5/network_full/loads.csv rename to tutorial-5/network_backup/loads.csv diff --git a/tutorial-5/network_full/network.csv b/tutorial-5/network_backup/network.csv similarity index 100% rename from tutorial-5/network_full/network.csv rename to tutorial-5/network_backup/network.csv diff --git a/tutorial-5/network_orig/snapshots.csv b/tutorial-5/network_backup/snapshots.csv similarity index 100% rename from tutorial-5/network_orig/snapshots.csv rename to tutorial-5/network_backup/snapshots.csv diff --git a/tutorial-5/network_full/storage_units.csv b/tutorial-5/network_backup/storage_units.csv similarity index 100% rename from tutorial-5/network_full/storage_units.csv rename to tutorial-5/network_backup/storage_units.csv diff --git a/tutorial-5/network_full/transformers.csv b/tutorial-5/network_backup/transformers.csv similarity index 100% rename from tutorial-5/network_full/transformers.csv rename to tutorial-5/network_backup/transformers.csv diff --git a/tutorial-5/network_orig/buses.csv b/tutorial-5/network_data/buses.csv similarity index 100% rename from tutorial-5/network_orig/buses.csv rename to tutorial-5/network_data/buses.csv diff --git a/tutorial-5/network_full/generators-p_max_pu.csv b/tutorial-5/network_data/generators-p_max_pu.csv similarity index 100% rename from tutorial-5/network_full/generators-p_max_pu.csv rename to tutorial-5/network_data/generators-p_max_pu.csv diff --git a/tutorial-5/network_orig/generators.csv b/tutorial-5/network_data/generators.csv similarity index 100% rename from tutorial-5/network_orig/generators.csv rename to tutorial-5/network_data/generators.csv diff --git a/tutorial-5/network_orig/lines.csv b/tutorial-5/network_data/lines.csv similarity index 100% rename from tutorial-5/network_orig/lines.csv rename to tutorial-5/network_data/lines.csv diff --git a/tutorial-5/network_full/loads-p_set.csv b/tutorial-5/network_data/loads-p_set.csv similarity index 100% rename from tutorial-5/network_full/loads-p_set.csv rename to tutorial-5/network_data/loads-p_set.csv diff --git a/tutorial-5/network_orig/loads.csv b/tutorial-5/network_data/loads.csv similarity index 100% rename from tutorial-5/network_orig/loads.csv rename to tutorial-5/network_data/loads.csv diff --git a/tutorial-5/network_orig/network.csv b/tutorial-5/network_data/network.csv similarity index 100% rename from tutorial-5/network_orig/network.csv rename to tutorial-5/network_data/network.csv diff --git a/tutorial-5/network_full/snapshots.csv b/tutorial-5/network_data/snapshots.csv similarity index 100% rename from tutorial-5/network_full/snapshots.csv rename to tutorial-5/network_data/snapshots.csv diff --git a/tutorial-5/network_orig/storage_units.csv b/tutorial-5/network_data/storage_units.csv similarity index 100% rename from tutorial-5/network_orig/storage_units.csv rename to tutorial-5/network_data/storage_units.csv diff --git a/tutorial-5/network_orig/transformers.csv b/tutorial-5/network_data/transformers.csv similarity index 100% rename from tutorial-5/network_orig/transformers.csv rename to tutorial-5/network_data/transformers.csv diff --git a/tutorial-5/sheet05.pdf b/tutorial-5/sheet05.pdf index c9287c2939eb5715cac962e27c2b6b87a7f728fd..eb9aca0c868d3e835f79c6346dd101f65ff48047 100755 Binary files a/tutorial-5/sheet05.pdf and b/tutorial-5/sheet05.pdf differ diff --git a/tutorial-5/sheet05.tex b/tutorial-5/sheet05.tex index 525656be1a3a2f51a497e5caddd4034af7a657df..96b439183068758059683bfa88315f12f084f1b0 100755 --- a/tutorial-5/sheet05.tex +++ b/tutorial-5/sheet05.tex @@ -89,7 +89,7 @@ \begin{center} \textbf{\Large Energy System Modelling }\\ {SS 2018, Karlsruhe Institute of Technology}\\ - {Institute of Automation and Applied Informatics}\\ [1em] + {Institute for Automation and Applied Informatics}\\ [1em] \textbf{\textsc{\Large Tutorial V: Investment and Large Power Systems\\}} \small Will be worked on in the exercise session on Wednesday, 18 July 2018.\\[1.5em] \end{center} @@ -135,7 +135,7 @@ Let us suppose that demand is inelastic. The demand-duration curve is given by $\paragraph{Problem V.3 \normalsize (generator dispatch with SciGRID).}~\\ %===================================================================== -SciGRID\footnote{\url{https://www.scigrid.de/pages/general-information.html}} is a project that provides an open source reference model of the European transmission networks. In this tutorial, other than previous simple examples, you will examine the economic dispatch of many generators all over Germany and its effect on the power system. The data files for this example and a populated Jupyter notebook are provided on the course homepage\footnote{\url{https://nworbmot.org/courses/complex_renewable_energy_networks/}}. The dataset comprises time series for loads and the availability of renewable generation at an hourly resolution for the year 2011. Feel free to choose a day to your liking; we will later discuss your different outcomes in groups. A few days might be of particular interest: \texttt{2011-01-31} was the least windy day of 2011, \texttt{2011-02-05} was a stormy day with lots of wind energy production, \texttt{2011-07-12} the weather 7 years ago was very sunny day, and \texttt{2011-09-06} was a windy and sunny autumn day. +SciGRID\footnote{\url{https://www.scigrid.de/pages/general-information.html}} is a project that provides an open source reference model of the European transmission networks. In this tutorial, other than previous simple examples, you will examine the economic dispatch of many generators all over Germany and its effect on the power system. The data files for this example and a populated Jupyter notebook are provided on the course homepage\footnote{\url{https://nworbmot.org/courses/esm-2018/}}. The dataset comprises time series for loads and the availability of renewable generation at an hourly resolution for the year 2011. Feel free to choose a day to your liking; we will later discuss your different outcomes in groups. A few days might be of particular interest: \texttt{2011-01-31} was the least windy day of 2011, \texttt{2011-02-05} was a stormy day with lots of wind energy production, \texttt{2011-07-12} the weather 7 years ago was very sunny day, and \texttt{2011-09-06} was a windy and sunny autumn day. \begin{enumerate}[(a)] \item Describe the network as well as its regional and temporal characteristics. @@ -163,7 +163,7 @@ SciGRID\footnote{\url{https://www.scigrid.de/pages/general-information.html}} is %=============== ====================================================== -\paragraph{Problem V.4 \normalsize (network clustering).}~\\ +%\paragraph{Problem V.4 \normalsize (network clustering).}~\\ %===================================================================== \end{document} diff --git a/tutorial-5/solution05 b/tutorial-5/solution05 new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/tutorial-5/solution05.pdf b/tutorial-5/solution05.pdf index acb2906ebbb6f42926d42d67c6f9bf098311a349..57c8a835a4427f0aff59d6fcccbc8bb32881a41b 100755 Binary files a/tutorial-5/solution05.pdf and b/tutorial-5/solution05.pdf differ diff --git a/tutorial-5/solution05.tex b/tutorial-5/solution05.tex index 7882b765a57d0849bf445e2eb3a1a7782505a58a..fa533fe6350c83384bfb2bc89094faa0c0c3966d 100755 --- a/tutorial-5/solution05.tex +++ b/tutorial-5/solution05.tex @@ -106,7 +106,7 @@ \begin{center} \textbf{\Large Energy System Modelling }\\ {SS 2018, Karlsruhe Institute of Technology}\\ - {Institute of Automation and Applied Informatics}\\ [1em] + {Institute for Automation and Applied Informatics}\\ [1em] \textbf{\textsc{\Large Solution V: Investment and Large Power Systems}}\\ \small Will be worked on in the exercise session on Wednesday, 18 July 2018.\\[1.5em] \end{center} @@ -313,7 +313,7 @@ Let us suppose that demand is inelastic. The demand-duration curve is given by$ cf. Jupyter Notebook %=============== ====================================================== -\paragraph{Solution V.4 \normalsize (network clustering).}~\\ +%\paragraph{Solution V.4 \normalsize (network clustering).}~\\ %===================================================================== \end{document}