{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Energy System Modelling - Solutions to Tutorial III" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "**Settings**" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "import pypsa\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "solver = \"glpk\"" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "***\n", "**(a) Build a network in PyPSA with the two buses North and South and attach the load at each bus and attach the wind and solar generators with availability according to $G_{N,w}(t) = Cf_w(1+A_w\\sin \\omega_w t)$ and $G_{S,s}(t) = Cf_s(1+A_s\\sin \\omega_s t)$ for a year (you have to call set_snapshots for the year) and with p_nom_extendable set to True. As help you should have a look at the [minimal lopf example](https://www.pypsa.org/examples/minimal_example_lopf.html), understand what the [components documentation](https://pypsa.org/doc/components.html) of PyPSA gives you and that you can find the underlying objective function and constraints in the [LOPF documentation](https://pypsa.org/doc/optimal_power_flow.html#linear-optimal-power-flow).**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Initialize network" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "network = pypsa.Network()" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Add North and South bus" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "network.add(\"Bus\",\n", " \"North\",\n", " carrier=\"AC\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "network.add(\"Bus\",\n", " \"South\",\n", " carrier=\"AC\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Attach constant load" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "network.add(\"Load\",\n", " \"North Load\",\n", " bus=\"North\",\n", " p_set=20e3)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "network.add(\"Load\",\n", " \"South Load\",\n", " bus=\"South\",\n", " p_set=30e3)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Attach renewable generators according to given parameters" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "network.set_snapshots(np.arange(0, 4*7*24))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "Cfw = 0.3\n", "Aw = 0.9\n", "omegaw = 2*np.pi/(7*24)\n", "\n", "Cfs = 0.12\n", "As = 1.\n", "omegas = 2*np.pi/24\n", "\n", "GNwt = Cfw * (1+Aw*np.sin(omegaw*network.snapshots.to_series()))\n", "GSst = Cfs * (1+As*np.sin(omegas*network.snapshots.to_series()))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": true, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD8CAYAAACW/ATfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXmcZEd1JvpF7pVZWXt1VXdVV1W3elN3q7U1MgIkITCbwcJjYwxjNvuNeXjgYXsePOPxGNvy2OPBMM9jhocNfgMeMAYxjG3ZSIAlkJHAQmpJjaRW79W1dXftW+5rzB9xI/PemxH3Rlblcm9Wfr9f/7oqK/LkyRMRX5xz4kRcQilFG2200UYbrQ1PsxVoo4022mij/miTfRtttNHGDkCb7Ntoo402dgDaZN9GG220sQPQJvs22mijjR2ANtm30UYbbewAtMm+jTbaaGMHoE32bbTRRhs7AG2yb6ONNtrYAfA164MHBgboxMREsz6+jTbaaMOVeOaZZ5YppYPVvq9pZD8xMYFTp0416+PbaKONNlwJQsj0Vt7XTuO00UYbbewAtMm+jTbaaGMHoE32bbTRRhs7AE3L2bfRRhttVItcLoe5uTmk0+lmq1J3hEIhjI6Owu/310Rem+zbaKMN12Bubg7RaBQTExMghDRbnbqBUoqVlRXMzc1h3759NZHZTuO00UYbrkE6nUZ/f39LEz0AEELQ399f0wimTfZttNGGq9DqRM9R6++5Y9M4xSLFt8/MY3I5gXsODeL4SHezVXI8Ts+u44mLSzg+0o17Dg3umEm3VcyuJvGPz1/H7u4Q3nxiN/zetm9lhY1UDv/r2Tn4PAT33TKC7o7a5KrbYNiRZJ/NF/FrX30OD784DwD41HfO4z/+zE341z8x1mTNnIs/feQC/vSRi6Xf3/3ycfz+fcfg8bQJX4RvvXgdH/7qaWTzRQDA156exeffexKdwR055Wxxfj6GX/zLJ7EczwIA/vKJK/gfv3wHxvsjTdasOvzUT/0UvvKVr6Cnp0ep/dTUFN7ylrfgxRdfrLNmOzSN86l/Oo+HX5zHv/+pI3j2d16Huw8N4j/83Qs4NbXabNUciQd/fA1/+shF/OytI3jud16Hf/OqffjSk9P40pNbOsjX8jg3v4lf++ppHNvThR9+7DX4xNtO4EdXVvDxv6//hHYjYukcfvmLT8NDCP7x/3oVHvg/78RGKocPfPnZ0mLpFjz00EPKRN9o7DiyP3t9E5/7/iTeecdevP/uG9AXCeC//evbMNLbgf/nG88jX3DX4Ko34pk8/uAfX8LNe3vwn992Ar2RAH77zTfi3sOD+E8Pn8XCZuuXwFUDSil+9+/PIBzw4vPvOYk9PR14+8m9+NC9B/C/nr2KJy4uN1tFx+HT372Eaxsp/Pm7b8fxkW7csa8Pf/K2m3H2+ib+8onJZqtnwCc+8Qn82Z/9GQDgN37jN/Ca17wGAPDoo4/iXe96FyYmJrC8vIypqSnceOON+JVf+RUcO3YMr3/965FKpQAAzzzzDG6++Wbceeed+MxnPtMw3XdcTPlfH7mIzoAPH3vjjaXXOoM+/PZP3YgPfPlZ/MPz1/Cvbh1toobOwl/9cApLsQw+/56TpZwzIQS/f99x3Pupx/Dn/3wZv/vTx5qspXPw+MVl/OjKKv7gZ45joDNYev2DrzmArz8zhz995AJeeaD1q0lUsbiZxhd+cAVvu20Ut431ll5/3dEh3Ht4EJ/7/iTec+eEMP31+/9wBi9d26ypPkf3dFmO57vvvhuf+tSn8OEPfxinTp1CJpNBLpfDE088gbvuugtPPPFEqe3FixfxN3/zN/j85z+Pt7/97fjGN76Bd73rXfilX/olfPrTn8Y999yDj370ozXV3wo7yrOfXkngW2fm8b5XTqA7bNz8ef3RYRwZjuIv/nkSlNImaegsZPNF/I9/mcJdBwdwy15jaDrWH8bP3jqCv3lqBhupXHMUdCD++w+uYDAaxNtPGh2GoM+Lf/vqG3Bqeg3Pzqw3STvn4ctPTiNfpPi39x6o+Nuv/eQhrCdz+Pqp2SZoJsbtt9+OZ555BrFYDMFgEHfeeSdOnTqFxx9/HHfddZeh7b59+3DLLbeU3jc1NYWNjQ2sr6/jnnvuAQC8+93vbpjuO8qz/9rTs/AQ4Bd/Yrzibx4PwbvvHMdv/+2LeH5uAzfvdWberZF45OwCFjYz+OOfPSH8+3vunMDXn5nDg6ev4t13TjRWOQdiZiWJx84v4Td+8hCCPm/F33/2tlH88cPn8NWnZnD7eK9Aws5CvlDEV56awWsO78K+gcqN2Fv29uDEaDe++tQs3veKykNUzYgo/X4/JiYm8IUvfAGveMUrcOLECXzve9/D5cuXceONNxraBoPlyM7r9SKVSoFS2rSobsd49sUixTeencO9h3dhuDskbHPfzXvQ4ffiAQd5Es3E3z53FbuiQdx9SHx19vGRLhzd3YUHTs01WDNn4u9PXwUAvO2kOA0YCfrw0zfvwT8+fx2JTL6RqjkSP7i8guV4Fj9/cq+0zS+8bC/OL8TwwtWNBmpmjbvvvhuf/OQncffdd+Ouu+7Cn//5n+OWW25RIvGenh50d3eX0j1//dd/XW91S9gxZP/c7DoWNjO475Y90jbRkB+vuXEXvn1mHoXizk7lbCRzeOz8Iu67eQ+8kvJKQgh+5tY9eOHqBmZWkg3W0FmglOLvTl/FHfv6MNLTIW331ltGkMoV8Nj5pQZq50z8/XNX0RXy4d4j8udwvOWmPfB5CL75wvUGamaNu+66C9evX8edd96JoaEhhEKhihSOFb7whS/ggx/8IO688050dMjHSq2xY9I4//TSAvxegnuP7LJs96bjw/jm89fx9NQqXr6/v0HaOQ+PXVhErkDx5hO7Ldu96fhu/NFD5/DtM/P4lbv3N0g75+HKcgKXlxJ47ysmLNvdsa8P/ZEAvnVm3ta2rYx8oYhHzy3idUeHhSkvju6wH3fe0I9vvTiPj73xSAM1lOO1r30tcrnyPtWFCxdKP09NTQEABgYGDLXzH/nIR0o/33777fjxj39c+v33fu/36qesDjvGs//OS/N4+f5+dIWsT+Xde3gXAj4PvnNmoUGaORPfO7eI/kgAN49a713s7Qvj2J4ufOel+QZp5kx8T/PU7z1s7Ux4PQSvPzaE751bRG4Hl/menl3HRiqH19g4XwBzKKZXkriwEG+AZq2LHUH2lxbjmFxK4PVHh2zbRoI+3DHRhycu7dwwu1Ck+P7FZdx9aFDphOw9hwbx3Mw64js4D/3Y+UXcMBjB3r6wbdt7Dg0insnj9OzOrcp57PwSvB6CVx0csG17z2GW5nn84s6dk7XAjiB7PkjsUjgcrzo4gAsLcSzu0ANDz8+tYzWRxasPqz3T+FUHB5AvUjx5eaXOmjkTyWweP5pctfXqOe7cPwAPYTX5OxXfO7+I28d6le6/GenpwP6BCH5waefaqxbYEWT/5OQKxvrCGO2197oA4FUHmLfxg8s7c3A9dn4JhAB3H1Qj+9vHexHye/DEDp2M/3J5BdlCEa9WJPvusB83jfbsWPJajKVx5tpmyWNXwSsPDOBHV1bbZ2C2gZYn+2KR4kdXVvHy/X3K7zm6uwu9Yf+O9byeurKKY3u60BsJKLUP+ry4Y1//jiX7p66sIuD14OSEeu38XQcGcHp2HZvpnXcg7akr7A4q7lSp4FUHB5DMFpDdwfsc20XLk/25+RjWk7mqKms8HoJXHBjADy+t7DhPIpsv4rnZNbxsQn1xBIBXHejHpcX4jrwr56mpVZwY7UbIL68qMeOVBwZQKFI8NbnzLt87NbWGDr8XR/d0Kb/n5fv74SFAJtcm+62i5cn+yUmWR662jPKOiT7Mb6ZxbWNnkdeZaxtI54pVkz1v/+z0Wj3UcixS2QJevLqBk1Xa69axHvg8BM/M7Cx7Acyzv228p6r7/bs7/Dgy3OWqWzBf/epX49SpU81Wo4SWJ/sfXWH5+j0WB11E4Jcy7TTyelq75rmalAQAHNvTjYDPg2d3GHmdnl1HrkBxx77q7BXye3FsT9eOG1+b6RzOzm/i5Hh1iyMA3Dbeg2yh2LLRdqFQqKv8lif707PruG2s+ntujuyOosPvxTM7bDI+dWUNE/1h7IqKr5SQIeDz4MRI946z19NTqyAEuH1sK+TVix/Pre+oevtnp9dAKTtcVi1uH+9FkQLpJqZyEokE3vzmN+Pmm2/G8ePH8bWvfQ2PPvoobr31Vtx000345V/+ZWQymYr3/eqv/ipOnjyJY8eO4Xd/93dLr09MTOD+++/Hq171Knz961+vq+4tfYJ2fiONhc3Mli4183s9ODHajed2kKdKKcWzM2tKB11EuG28F1/8wRQy+YLlqchWwqnpNRzaFa24RVUFt4314gs/mMK56zHcNLozHov5zPQavB5ScYuqCm4b68WF84tIZvPoCHiBhz8GzL9QWwWHbwLe9MfSP3/rW9/Cnj178M1vfhMAsLGxgePHj+PRRx/FoUOH8J73vAef/exn8eu//uuG9/3hH/4h+vr6UCgU8NrXvhbPP/88TpxgFwyGQiHD1cj1Qkt79qdnGVFvZWABjLzOXNtEOlff8MopmFtLYTWR3bq9xliYfabGd4w7FZRSvDC3vq3xBWBHpb5+PLeBg7s6EdnC4xnH+sLwEiCZbd58vOmmm/DII4/gN3/zN/H4449jamoK+/btw6FDhwAA733ve/H973+/4n0PPPAAbrvtNtx66604c+YMXnrppdLffuEXfqEhure0Z396dgN+L8GNu9V3/fW4bawX+SLFC1c3qt6wdCP4zYIntuhl6vc59A+iaFXMraWwlsxt2Svf0x3CUFcQz86s2d6p0wrgi+PrFE6yi0AIQcDnKZO9hQdeLxw6dAjPPPMMHnroIfzWb/0WXv/619u+58qVK/jkJz+Jp59+Gr29vXjf+96HdLpc+BGJNOY5u0qePSHkjYSQ84SQS4SQjwn+/j5CyBIh5LT279/UXtXqcXp2DUd3d1VVEqfHzdokftFB16vWE8/PscXx8HB0S+/f1RXCcFdox3j2210cCSE4MdqzY8ZXeXHc+rMi/D4PMvkCCsXm5O2vXbuGcDiMd73rXfjIRz6CH/7wh5iamsKlS5cAAF/60pdKDybh2NzcRCQSQXd3NxYWFvDwww83Q3V7z54Q4gXwGQCvAzAH4GlCyIOU0pdMTb9GKf1QHXTcEgpFihfmNvBzt2/9EYO7ukIYjAbx4tWdQl7rODLcta18+/GRrh1DXttdHAHg+J5uPHJ2AYlMfkupDTehtDiObH1/IqCVa6ZzRUSCjc9Cv/DCC/joRz8Kj8cDv9+Pz372s9jY2MDP//zPI5/P42Uvexk+8IEPGN5z880349Zbb8WxY8ewf/9+vPKVr2y43oBaGucOAJcopZMAQAj5KoC3AjCTvaMwtZJAIlvA8W0MLAA4vqcLZ661PnlRSvH83AZ++mb5ff8qOLqnG989xzbRwoFWJ6/tL47H9nSBUuDs9c2qa/XdBr44Htm99cXR7/WgCHa+oRmL4xve8Aa84Q1vqHj9ueeeq3jtscceK/38xS9+USiPX4ncCKgsjSMA9I9umtNeM+PnCCHPE0L+JyFE/uiZBuHc9RgAdvXBdnB8pBsXF+Mtv0k7vZJELJ3fltcFsMWxSIGzmv1bFSz/vLHtKhrujOyEaOjFqxvbXhy9HgK/14NUi8/HekCF7EV33JpPNfwDgAlK6QkAjwD4K6EgQt5PCDlFCDm1tFTf60rPXt+E10NwYFfntuQc29ONQpHi3Hxrk9eLWvSy7UhIe/9LLR4Nza2lsJnO4/ie7dlrqCuIgc5Ay+9zUErx4rUNHB/ZnvMFAB1+b5vstwAVsp8DoPfURwFc0zeglK5QSvlJgs8DuF0kiFL6OUrpSUrpycFB9RvvtoKz1zdxw2Bky5uzHMe0+zta3fM6Px+ryeK4uzuE3rC/5fc5+OK/nZQEwDZpj+7pxostTvaLsQzWkzkcGd4+2Qd9HmRyRRRb/NGhtT4prEL2TwM4SAjZRwgJAHgHgAf1DQgh+uer3QfgbO1U3BrOXt/ccsmlHqO9Heju8Ld83v7s9Rgm+sPbXhwJITg+0l2KFFoV564zcj40tD2yB1jq6+JCDJl863qrZzV7bWczG2AHkLLJDRRpEekWthelFCsrKwiFqjvJbgXbHQ5KaZ4Q8iEA3wbgBfDfKaVnCCH3AzhFKX0QwIcJIfcByANYBfC+mmm4Bawns7i2ka6JF0EIwZHhKM63eBrn/MImTmyjJE6PI8NR/NW/TKNQpNKHlbsd5xZiGOsLo7MGm4RHdnchX6SYXErUxEFxIvj8ObJNsh8dHcXFyWksrFxFbiXQ0hVMoVAIo6NbryY0Q8lSlNKHADxkeu3jup9/C8Bv1UyrbYJvDt64zRCb4/BwFH/77FVQSkFI65FXPJPH7GoKb7+9Nvvqh4aiyOaLmF5JYP/g9tJCTsX5+di2vVSOw1p0cGEh1tJkP9QVRE9Y7RkJMvj9fhw5eAN+9svfwi/+xDh+5y031kjD1kdLXpfAQ8btVuJwHBqKIpbJ43qLXnd8YYEtjjUjr2FOXq35gOh0roAry4lte6kc+wYi8HlIqR9aEefmYzWJtAH2vImDu6Itba96oGXJvj8SwGA0WBN5PC97vkUHFy9TrdVk5Ju8rToZLy3GUSjSmi2OAZ8H+wYiOD/fmotjrlDEpcV4zRZHgM3JVk+t1hotSfbn5lk4XKuUy6EhjbxadHCdn99EJODFaG91d/7LEA74MNYXbtnFsZx/rl3K5dBw63qqU8sJZAvFmi2OAHB4uFOr8MnWTGaro+XIvlikuLgYq0mVBEdPOIChrmDLkte5+RgODUfhqeFm6qGhaMsujufmNxHweTDRr/YAexUcHopiZjWJZDZfM5lOAS9TrSXZHxxq7VRhPdByZH91PYV0rrjtenEzDg21pudFKcX5hVhNQ2yAeV5XlhOueoycKs7Nx3BwVyd8VTxWzw7cObnYguRVqzMcehxu8dRqPdByZH9piU2WWpP94aFoKVfbSljSDrscrmEkBDDyyhcpriwnairXCbiwULtKHI7ypnbrkdf5hRj2DURq+kCb3d0hRIO+lo0e64HWI/uF+pD9oaEo0rkiZleTNZXbbJQXx9qTPdB6nlcsncPCZqbm42usL4ygz9OSZH95KY4DNS7BJYTg0HC05cZXPdF6ZL8YR38kgL7I9up5zTg03JrkdXmJed437KrtAxT2D0bg9ZCW87wmub1qTF48zXG+xdI4uUIRMyvJmo8vgBVOXFiItewDyGuN1iP7pThuqLHXBQAHNZmXFltrMl5ejCMc8GK4q3bHsgEg6PNioj+Mi4utRfaXtUio1mQPsGjoUos5E9MrSeSLtC72OrgrivVkDsvxdkWOClqK7CmluLQYr3mIDQCRoA/DXaHSZG8VTC4nsH8wUpeTwfsHO0uecKtgcikBr4dgrK92lTgc+wciuLaRbqmKHD5f6nGSev8gixYmW2xO1gstRfZL8Qw2Urma5wc59g9GWo68Li/G6+J1Acxe0yvJltrUvrwUx3hfGAFf7acOJ8RW2tTm84UTcy3Bx+1kC9mrnmgpsucploND9SGvfQMRTC7FWyZHmMoWcHU9VT+yH4ggWyji6lqqLvKbgctL8brd97NvgBFiK5H95aU4dkWD6Ar5ay57T08HAj5PS9mrnmgpsr+8WJ9KHI79g53YTOexmmiNHCGfJPXwuphc1g+Xl1sjzC4UKaaWk7ihTvbiZN9K0SNbHOtjL6+HYKI/3E7jKKKlyP7SYhydWm69HijlCFvEk6jnZiPAPHugdchrbi2JbKFYN3t1BLwY6eloGfKilNY1TQgA+wdab1+oXmgpsq/nZiMA3DCg5QhbZDJeXoqDkLJHWWv0RQLo7vC3lL2A2pep6rF/MNIyzsRKIovNdL6+ZD8YwcxqErlC653UrjVai+yXEpjor99EHOntQMDraRlPYnIpgZGejm0/nUoGQkhLbWqXNhsH6umpMnu1wr4QT6vWK43DZHciX6SYabHDjvVAy5B9OlfAtY1U3bxUgOUIx/vDLeN5XV6qb4gNsKihVTbQLi/F0RcJoLfGB/b02DcQQTyTx1I8Y9/Y4bhcpwNoevCF5EqLOBT1RMuQ/exqEpTWLyXBwTxV96clitpj8OpN9jcMdmJ+M41Exv2145cXE3XbnOXgm9qtEA1NLsUR9Hkw0lObq7NFKO0LtUgRQD3RMmTPvceJupN9J2ZWk8i7PEc4v5lGKleoa/4ZKE/GVvDuJ5frHwmVDwq53168TLWWV2eb0RNmV6O0gr3qjZYh+6kV1tn76pizBxh55QoUsy6vHS+dbKxj/hnQlV+6PBpaT2axHM/WNf8MAHu6OxD0eVoiery8lKi7vYDyPkcb1mgZsr+ynGDVH+HaH97Qo5QjdHnYOFXnGnuO8f4wCHG/Zz+1wjYA99V5cfR4SEvsc2TzRcytJUuRXT3RShVM9URLkX0tnxwkw/6B1sipzqwmEfR5sKtGz+mVIeTntePutxfAFq96oxXI69p6CkWKutwhZMb+wU4sxzPYTOfq/lluRsuQ/dRysu75egDojQTQG/aXKg3cipnVJMb6wnU7k6DH/sFO12+g8ecY7O1tjEMxs5p09VO++OLYELJvscN79UJLkH0qW8D8Zrru+XoOFma7m7ymV5INmYgAm4xXXF47PrOSxGA0iI5Afc4k6LFvIIJCkWJ2zb214yWyb1AkBLg/tVpvtATZlzZnG7AZBADj/RHMrLh3IlJKMbuaxN4Gkf1YXxiJbAErLr5TaHo10bDFkaeK3DzGZlaTCHg9GIrW5+oSPUZ72b7QtIvt1Qi0BNmXyi4b5NmP9YVxfTONTL7QkM+rNVYTWSSyhYaR18QA+xw3T8bZ1VQDyZ6N4+kV96YlZlaSGO3rqGvZJUfIzx6+4+bFsRFQIntCyBsJIecJIZcIIR+zaPc2QgglhJysnYr2aFSNPcfEQBiUMgJwIxqZT2WfE9E+153klc0XcW0j1bBIaKAzgHDAi2kXXwHA94QahfH+sKvt1QjYkj0hxAvgMwDeBOAogHcSQo4K2kUBfBjAj2qtpB2mlhMYjAbRGfQ15PPcTl6NrCwBgL19Ha4Os6+up0ApMN4g8iKEPQnLrZ4qTxM2yl4AMN4Xce34ahRUPPs7AFyilE5SSrMAvgrgrYJ2fwDgEwDSNdRPCVMribpfk6AHJ0m3Di5eWTLagMoSgD2PdreLw+xGbjZyuNlTXU/mEMvkGxYJAaxvluOZlriWo15QIfsRALO63+e010oghNwKYC+l9B+tBBFC3k8IOUUIObW0tFS1sjJcWU42rBIHAPojAUQCXteS/fRKErsaVFnCMdYfLm2kuw2NTnsBWhHAahJFFz7SsTn2crcD1giokL1oh6U0AgkhHgD/L4D/204QpfRzlNKTlNKTg4OD6lpaIJnNYzmeaajXRQjBWH/EtRtojc6nAmzz3K3X0M6sJBD0eTDYWd8DaHqM94eRzRcxv9nwQHnbmG5GJOTy1GojoEL2cwD26n4fBXBN93sUwHEAjxFCpgC8HMCDjdqk5ZukjSav8T73htmzTSB7FmZnEXdhmD2jlak2orKEg5OXGz3VRh5A4xhre/a2UCH7pwEcJITsI4QEALwDwIP8j5TSDUrpAKV0glI6AeBJAPdRSk/VRWMTmhEyAsD4QBhzqykUXBZmZ/IFXN9MNzSfCug8LxdOxpkGll1ylGrtXeipzqwkMdAZQKRBBRMA0N3hR2/Y71oHrBGwJXtKaR7AhwB8G8BZAA9QSs8QQu4nhNxXbwXt0DSy74sgW3BfmH11TassaWCIDbiXvHhlSaPH1+7uEHwe4kpPtRlpQgAYc/lhx3pDaemllD4E4CHTax+XtH319tVSx+xqEtGgDz11vu3SjNKG0HKirg9nqDWatTjyMHvKZZNxLZlDPJNvuL18Xg/29oVdS/Yvm+ht+OeO94Xx7Mxawz/XLXD9CVqeT23EhV568MnvtrCxWWTfFfKjLxJwHXk1y178M6ddFgll80Vc32h82gtgDti19ZSrL5CrJ1qC7JsxsPb0dMDvdV+YPbPCrjYerPPVxiKM9YVdl8ZpRo09x3g/8+zddIEcv9q40XtCABtfRcoOwbVRCVeTfbGo5VObMBG9HoK9ve4kr0ZdbWwGJy83YUYrr21kZQnHWF8YsXQe60n33NM+3cRIiF+X4taS6HrD1WS/FM8gky82xYsAtINCyy4jryZFQgDLqbotzJ5ZbdzVxmbwC9HcdBitqZFQX7v80gquJvtm5lMBNrhmVt0TZpcqS5owEQFGXkUKzLnonvaZBt/xosdEqYLJPfaaXU0i4GvM1cZmDEaD6PC792R7veFusl9pLtmP9UcQz+Sx6pJ72ht9tbEZpQomV5FXczYbgXLe203kNbOSxN7exlxtbEbpAjmXpVYbBXeT/WoShAB7ehrvRQC6sNEl5NXMfCpQDu3dUgvd6KuNzeD3tLuK7JuYJgTYGHOTvRoJV5P97GoSu7tCCPoan08F9JcvucOTmG0y2Q92BhEOeF2Tg+ZXGzefvNxhr2YdQNODp1bdeIFcveFqsuc19s0C/+yZFXeUenGPulFXG5vBw+xZl0RCzdxs5ODk5QY042pjM8b7w8jki1iMZZqmg1PherJvphdRehyaSybjzGrjrzY2Y8xF5MXLLpvqqfaHsRjLIJV1/iMwm50mBNg+GuCuTe1GwbVkn8oWsBjLNHVgAXCdp+oEe7mlgmlmNdnwq43N4F6yGyqYnBAJ8fHdJvtKuJbs+eBv5sAC2GR0y8BqZtklx1h/GOlcEUtx54fZfHFsRmUJh5vIq9l7QgAw0sMegekGezUariX7WY3sm5kfBNjAnt9MI51zdpjNrzZutmfP+8sN0VAzrjY2w01kz642DiIcaNzVxmYEfB7s6e5wxfhqNFxL9s2usecY62c3Xs6tOXuTdm6t+ZUlgHvIi1eWNNuZ6NMegel0ewE8Emr+DbB7+zpcYa9Gw71kv5pCOOBFfyTQVD3GXPI4tGafNuYY7WVhttNroZvGr19UAAAgAElEQVR1tbEZhBCWKnS4vQBn7AkB7FkTTh9fzYCLyb55F3rpUfJUHT64nJBPBYCgz4vdLqhgmnZAJQ7HeL/z94WaebWxGewRmBkks+57BGY94Vqyd0KIDQADnQF0+L2YWXV2GmdmJYmQvzlXG5ux1wUVTE6oLOFwQwXT1SZebWxGeV/I2XOy0XAl2VNKHRMylu/jcD55OSESAtxRa9+Mh2bLMNbHDgotOfigEO9PflNnM+GWfaFGw5VkvxzPIpVr3oVeZrjFU3WKvcb6wljYzDi6gskJB9A49rqAvJyyJ6TXwcn2agZcSfZOGliA88NsHgk5IcQGyqkRJx8UctriCDibvPjVxrsckCbsDfvRGfQ53gFrNFxJ9qUQ2yGTcbw/jFSu4NiDQiuJLJJNvNrYDDdc3dvMq43NGHFBBVMzrzY2g6dW3XKBXKPgSrLnHs5ob/NreoGy5+VUT8JpkdC4wz3VZl9tbEbQ53X8QSEnRUKAO/aFGg3Xkv1QVxAhf/PzqYDzc6pOKbvkcPpBobm1pCMOoOnh5INCTiqY4BjrD2N2LdW+6lgH15K9kwYWjzCcetUxPwPgFE+VHxRyqqdarixxhr0AZ3uqpQNoDqjE4djbF0a2fdWxAa4ke6fU2HM4/arjaYdFQoCzyctpkRDAdHHqVcdOSxMC7tjUbjSUyJ4Q8kZCyHlCyCVCyMcEf/8AIeQFQshpQsgThJCjtVeVIZ0rYN4BF3qZ4eSrjp0WCQHOrmAqXW3sgMoSDidfddwme3fAluwJIV4AnwHwJgBHAbxTQOZfoZTeRCm9BcAnAPyXmmuqwQmPihNhrD+MaYfej+O0SAjQXXXswDDbSQfQOPh4d2JFTrk6zhkFEwC76thDyg+gaUPNs78DwCVK6SSlNAvgqwDeqm9AKd3U/RoBUDd3zYleBODcg0JOjYScvKnthKuNzXCyp+qEq43NCPg82N3t3E3tZkCF7EcAzOp+n9NeM4AQ8kFCyGUwz/7DtVGvEk7MpwJlfZwWZjs1EnJq+SWlFDMrCcdFQn2RADqDPsfZCwCmVxOOuNrYDCfvCzUDKmQvimUrPHdK6WcopTcA+E0A/0EoiJD3E0JOEUJOLS0tVaephtHeDtx38x5H5VMB53qqTqwsAcoHhZxmr9VEFolswXH2cnIF0+xqyhF34pjByN6ZFXLNgArZzwHYq/t9FMA1i/ZfBfAzoj9QSj9HKT1JKT05ODiorqUOrzkyhD97562OyqcCzr3q2GlllxxOverYqWlCABhzYK290w6g6dG+6tgIFbJ/GsBBQsg+QkgAwDsAPKhvQAg5qPv1zQAu1k5Fd2CgM4BwwHlXHc+salcbN/Gh2TI40VN1Ntk7r4LJqWlCwJlXHReKFF/50QyuLDd+49iW7CmleQAfAvBtAGcBPEApPUMIuZ8Qcp/W7EOEkDOEkNMA/h2A99ZNY4fCqVcdO7GyhMOJ9uKLz6gDrjY2w4lXHTt5cXTivtD8Zhr//m9fwJOTKw3/bKXtc0rpQwAeMr32cd3Pv1ZjvVyJvQ68fGnWgTX2HPoKJqcc+HLS1cZmlC6QW01iV1eoydowOJnsy+WqzpmTzXxOgitP0DoVTguznXa1sRn8qmMnpXKceACNg2+COmlfyElXG5vRE/Yj6rCrjpu5OLbJvoYY69MOCjnkqmN+tfG4Q8nLibXjMytJRzyKUISRHudVME2vJDDWF3bE1cZmlB7W7iB7za4m4SHA7p7GR2Ztsq8hnHbVMT9t6VTychrZZ/IFXHfgATSOgM/juKuOnXgATQ+n7QvNriaxp6cDfm/jqbdN9jWE02rtnXoAjcNpVx1fXXNuZQmHk646ppQ6ek8IcN5VxzOryaY917hN9jXEKD8o5JCrjmccXFkCOO+gkJM3Gzmc5Knyq42duicEMHs56arj2bXmRUJtsq8h+FXHTrkQzWkPeRGBPT7OGeTl9EgIcNZVx25ZHAFnVOSksgUsxTJNuzCuTfY1htM8VSdPRMBZFUxOvNrYjNJBIQfcweQmsndCNMTvzWpWJNQm+xrDSWG2E682NmO83zkHhZx8AI3DSeWXTrza2Iw92lXHTnDAZlbbZN9ScMpVx/xq4/E+511QpYeTNrWnV5KOuwDNDCd5qtMrCQxGnXW1sRlOuuq42WnCNtnXGE656niOV5b0O9frApxDXryyxOmRUG/Y75irjt2QJgScE23PrKbQ4feiPxJoyue3yb7G4DXtzR5czfYiVOGUq4751cZOt5eTKphmHV5jzzHe74yrjmfXktjb19G0NGGb7GsMpzw+rtn5QVWUrjp2iL3cQF5jfR2YbjLZO/lqYzP29rGrjhOZ5l513OwzCW2yrzH6I/yq4+aTl1OvNjbDCUfa3UX2zLNv5kEhJ19tbMaYAyqYeJqwmWde2mRfY/CrjpsdZruhsoTDCTnVWZdEQoDuquMm3sHktsURaG4FkxPShG2yrwMc4amuJDHm8EocjvH+5h8Uml5x/gE0jjFeftnEMTajHVJyevUS4IwigNk1tmfQTGfC3WT/5Z8DvvgWtbb/7WXA3/6qfbtCDvijUeCxP7Zvm1wFfq8beO6vDS8LDwotXWBtJx+zlzv5z6zt4jn7tqe/wtomyg9DKF9tbKrEeew/A380wr6jHf7ug8CnT9q3A4C/+mngS//Kvh2lwH+9GfgH4+MP9ooqmPIZ4D8OA9//pL3c+CKzwfNft2+7cIa1nf6h4WXhnSWXHmFtVy7by33mi6xtat2+7aP3A388BhQVFrdv/Arw/73C8JLUU/3/3wB85R32MikF/stR4KGP2rfNpYD7B4Afftrw8ox2tbEhTbh5jdngzN/Zy712mrWdfdq+7fmHWdu1afu2T30e+L0eIBMvvSS96vg7/wH4kwNAsWgv94H3AJ97tX07APjcvcDX3m14qbyH1rzqOPeSfXqDTcapxw1EJ8TyJWD5AvDjr9gT3fQPgGwMeOw/2etw/mH2/z/9juHl8X7BVcfPf439/+Rn7eXyNi88YN/2O9pnX3i49NJSPINUTnC18WN/BGTjwNQT1jILOeD0l4GVi8CyzRMmk6vAle8Dl79rT3SLZ4G1KUaMOqITel5Xvg/kU8B3/8BaJgCc+yb7/7v327c9/RX2/1OfM7w8syq42vgHf8b+f/Eb9nIf/hj7/+J37Ns+/ik2fmeetG6Xz7AxsHgGWL1Sell41XF8EZh9ko2DTMxa7vUfA5tXmQ3siO7yd4FijhGjDtMrycqrjc/+A/tfxVF67kvs/2e+YN/28U+x/19SWEQe+ggAClz6p9JLhBCM9ZuibUrZApZYAq4+Yy0zlwJe+nvg2nPAxpx1242rwLVngbMPAtny5/FIqJ3G2QoWzpR/nv+xddtrz5V/1k0a27ZZm/s0rj3L/qfGCVN+9qVucHF9N65aywSAzTnje6xANdK8+mzpJe7xjQ/o0ji6gVfSWwa9B3XVpu388+WfF160bqu37fpM6Uch2evb5rNqcnNp63YAW3AAw3dM5wq4vpHGRL8p7RVfYP/rv6MMHi39Y2ev9Eb5Z7t+0EcUOnsIrzq+rpsD/DvKoLdt7Lp6W90CPbOaxIR5cbx2mv1vt9gAzPkCgJVL9m2Tq+z/6zbznFLA42c/m/qhYl8oqXMQ7fph6byu7Wnrttd1f18uv296hT0BrZkH0NxL9pvXdD/bDNhNHcHGrsnbVS1Xa5taY6u/BmH5JdfB7vP1cjdt2uZS7LMBw6Tln2vw7PWTutn2MunDrzoW2svU1lJuYsk+cuNtdTI5aVbkn0v9YPP56U0WMQENsRfA0gGG8ku9vezGjYVcy7bxRQAsTTgt2hPiOsTn7SMGVdtSqt42ucqiEKDie431ma46boS9dPpOrzb/dLaLyb4RhFSN3PLPwjCbD5LkirUHmkuXvQ67QWgg8LI9plcS8BDT1cZbHdy2bavpB7EOwoNCW5pgFIjNW7flOsbmSwtD6SEv+sUxEwMym5W6CGXq+6Ea29pEeRZ9VuGpVtVn2+vfpZiWJpQtjsU8W3hl0BN47Lr1wpBaY+k8sy4ixOTfa6921fFCTJt7m1X0WWyrfWack80umHAx2V8DAlEg3K82YHvGyz/bte2dKH+GnQ6Ctvyq49JkzGfY4OdtrUiRE0fvBJBctl4Y+Gf2Thg+f3o1id3dHQj4PJK2igO2Z1zNBh19QLBry/YC+CnHpKRtjfosE2dplN4JALSUppkuefa6ybip64f4PFCwOJDD9TP1g7ituM/kbQnQPVZhg/H+CCNdXsG0eRXoHAJ8obqPcW4vwx4HJ3CVPkuvA7kka1vMsXFu9fkAa2u3MFiM8YpN7Wr7zOMDukbV2naNsPZa23SugIXNTNuz3zLiC0B0CIjutvfm4ousU0M9am1338J+tvIoi0VG4Ltv1toa5Ro8Ve7lSNpWfD5Q1oHnjYVtF8ptE0slQhJe6KVvq2KDYDfQt9/eq44vAtFh9s+27QLQfxDwRyp0qKhgii/o+sFC33yGkYdKnyW4bY39MLOSQDToQ2/Yb9SVt6VFa09V32exeUZ80rbV9MMCc2Z6xoTjC9AdFDL0g0L/7jrK8tsqfWbqB2GaMJsAcgm1PjOPcSsd9P1QyJbTlnZtBeML0EXbXIfhE2o2iOwCuvaote3awxZePr5kacIGw71kn94AQt1AR699FYi+bVqhbdcewBuwlpvZBEDLnoxJ7rg+zOabcrytlVxzWyt9K9qy32dWk0Yvlf+NeIHuUTUbbMW22+iH0kEhftVxegPo2QuA2NhLS7VsxV6a3OnVJMYHTAfQttoPtGC9QZneYN53dLiKfuipsEGFp1rtGA/12LctFpl9TfaaEaUJtzNu6zEf8mlDVDzSa7rqOL3BotHIQP3mgya3tDia52SD4WKy32SdFeq276zMJhDqEk4aA4oFttEW7GKTwUouz+fy9JBgMpauOk6b2qrI7RXLNSBtaptex2Y6h9VEttKLSG8CwSgQ7tMmgsXFUCV7KRJHULGtRT8YrjrOpZkXF+qx79+t2MvUD9MrycqroG36Vyi3V7F/ub0ym9bpIYt+qPBU0zq5doSkl2vVNhsHQFl04Y+UdJhaYQ/NNqQJtzluLXUFqugHAnTvrZDr93qwp0d31XHGZC+raCxdzXyo7Af+lKyKUugGw71kn9nUrbYWoR2gdVaPfVs+sFTk8gEbGWATwdSW5zNnV5OCiWAlV/NOehTaZja1XOJIqe2MKMTmbUPdzA6A/aTRe5RWE0Ev10pXSnVyK21rqGCqqh80e3UOa9GYQv/q+qFQpJhbE9TYmwnJUu4G4OsAIoP2bdOmftCXYsradlTatuKq44w2xu36oVhkkYdErvF7iftBWFnC7dXNozEbewFqY7yqftCINtwnbDvWFy5XMKU3GIGHeuyjsYxpPlihNB+6y/ZaSSIa8qFHnyZsAtxL9qXV1mbAFnIsl8i9dRXiUJHL25ZWcWNbg6fK23arpCWqDFv55wNAar1cWSKajCFdW0tvSifXNi2h6CXm02wzjkdjJnsZrjou9YMCIenbqvZvzwT7P7WGa+sp5Aq0cnE0L7p2/cAJEbDvX+V+0HmJprQEr2AyePYq3mc2BoBKx61RV072xvkwI6osKfVDj7B/hW1LaRybtsRT9tbt2oa6pP1guLPK3Geq8yyzaX3yWdAPfHFs9j1VSmRPCHkjIeQ8IeQSIeRjgr//O0LIS4SQ5wkhjxJCxmuvqgm8A0I91mkJTlR8wFp2qja4SwuDQngpkTsmInvVtITHz3K6gIIH3qXzEtdLDzsX5uyDGnnayt2okCsEpbqJ0GOdljAvpCaZ/Krj2dVkTfvBqIPWNtynRWPr5Qu9zItjZhPwh1nkBlTdD5b6cnvZyrXuh7E+LS1RLDAS53KtojF9P9ilKvUOjdYPG6kc1pK5Ss9+K/3QOcTGul3/BqOKpLxZ1lXQll11nGVXHVfVD+b+lURjuTRQyBj7AWxxdMIT42zJnhDiBfAZAG8CcBTAOwkhR03NngNwklJ6AsD/BPCJWitqQCHHam9VvCmRBy6bCIYBa+OplghJnGowXHVcIdcuzO9iRKOSljB49iyNM9AZQGfQV9k2ZGxrqUNQoW0uyTx/g6cqmQg29gJQPtKe0S8Mit6niqeaqWw7peVTK07P8kUs2A37tISivbi+VfVDt7TteH+EXXWcMo0vq2iswl4qC2k5wuJpworTszaRboVc4gUCEbX+DerTjzZyLWxruOq4mn5Q7V9z2iufQj6TxNxaqumVOICaZ38HgEuU0klKaRbAVwG8Vd+AUvo9Sikvkn4SwGht1TQhrTNqqJv9LBvc+g4IdrEyupzk9juD3K7ye1Xkmj7fcNVxepMRty+kybXJDwa7AEKEciv05bpq7+V3lkjbBnlbiVxKyzndkE3btMkGXH/Z9yq17WbRmOkahNJBoYp+sLGXXgc7ewU6Aa+v1L8zK+xCr+GuUKXcUDfg8Sj2Q5e9vfRy7exVyLP0o0U/7NUqmFZWtbJQlf7NCGwrq103z7NMrBQ5VqRxqu2HkDbGVfo31A34AmxfxGpO8tSMhBM44c7wfaFgl729SsUCxnkm/V6AoR8WlpaRL1LXkP0IgFnd73PaazL8HwAetvj79pHReREBbdBl4+K2+rC11FZy503aJNfqbhweInK5gs8vk9dGmcADnYYb+YQ68EElkWts280WEo8PyMTFZZdAOQ8f6GS/y+RmE2Vv3c5eek9Z1bZ6uTlj27E+dtVxNrGmk9tp0w+8z6IKfbZRntxa2+mVJPb2dhgv9OJtDf1gU04Z1KIxwL5/VcatPhqU9Blf1BeWtJpxpX7Qy40AoOUTqhU6mOdD3GJPaIONQX+HWp+Z+sGybaiKtnobmAi8XK6aKMvdCn/I+tdgL9Zn1xaXtc92QRoHgGhXQZgHIYS8C8BJAH8i+fv7CSGnCCGnlpYsDqnYIW0/ESra6olOxesJRNiGYl7ygIj0JuANAr4gaysYAKWDQjy8BBQIfFM3EWwmjT4KCESQz8RxbUPwXNBSBUYVJKNir7TJXqpyg1yusS3f1N5Y066L4PrmEtbeZyDKLiKzW0gzlQvptGxxNPSDDcnw/vV4GeHLbFDIsajSYK8qFtKMmOyXl7UTqIb5YDPGg9325GWeZ9k4ZpYT4jRh2jgW7b11/RhXnQ/ieVYhlzs/Jtt2d/gRDflwfWWNXemg4vyI7KW8kAILWt+4xbOfA7BX9/sogIozw4SQnwTw2wDuo5QKGZJS+jlK6UlK6cnBwcGt6Mtg9sAB+0kT0pGMXWcFuxiB2MnlAzYoJuUx7arjbHzdROB2A7a7LFclHAaAQBTJ2DooFQysbJylr0reJ1H0wO3speuHILfX1iMsTl6xjVWmYyBa1iG39X4o62BcSGk2od1ZIpiIZrmW3rquz6z6l/elYSFVsZe4H/gdTOs8jRNUGeN6uQp95vGz9GMgAhTzmFtZV7OXbT8o2AswLtDBqFwuL+3VR9AmuTy1urysT3vZ9YOewBXHuK4fVtdWxWnCJkCF7J8GcJAQso8QEgDwDgAP6hsQQm4F8BdgRL9YezVNMOQHtQ6w7aweBe9Tq5f2BaShoEGufoLnUxWVKNxTzSXXdW3tQtFNtbbFonFhCESQTrDvWuGp6u3l8Vh7SFV56xuVbZXkiicNJ5FUbJVNGK6rpdwNk71i1hvwuj4rpmNIZguVm41cXwOBS/ohn2V9H1ToM32ZqC/APFC7iDTULfU++VXHic1VXVsFewHqqaRQt7Z/xPpsZXW1cjOb62voB0WHxs5br5Ary63zYgHrPhvrC2O9FDl22zs/ojFum3or99n6+mrlvf9Ngi3ZU0rzAD4E4NsAzgJ4gFJ6hhByPyHkPq3ZnwDoBPB1QshpQsiDEnG1gSBcsl9to/beuj4/qOIh6b11QJiDBoBiat3onajkdLlcaW5dVy+t6ZtNcrKXHHhRCZ0NYatiJKQSBWQ2Wb10oFPaZ30Rlh7IJUz2stTBZC9aZJu/sra6/qVaP4jTOOZ+sEv9KUQBeq+6JLeKtJdkXygV0/Y4DAupRT94g4A/pBbp6tNeAOKxjcp8Pf9uJXtFWR9YleGqRAGUllOVgPWia7atJCoe6wsjyRdHiyigQq5F+rHctnI+bG5sNP3kLIfSTfqU0ocAPGR67eO6n3+yxnpZQz8R+EMjrCaNPwx4/WreupnALb0e40RAJl72LACMageFSCZm8vzibCCbD1nweumQyuA2E3gExfV1RAJe9EcClboCphy0AiF5fSyEt9vjCHaV9zasPNVgtJzTBSomDT8oRFMbQNRkWyuy7RzS2uomo1/w+DdT/pfk2OdXkFc+w+qlVTYG9WTAdVAh8FJbhf71hdhCKdkXys6vl+Xy+/xl9jIQuA15ZYz2AoAIJGWEmU12cZ6uLbLxch27WQclh0ZLP+r7QfakqLRojItTq2eL2uep7KPp+8GvkjLm6UfWNhVfx9iNziB7d56gFW26qnh+dp6MeeMIsCEva++THxTy500EDio+BKbP6XJ9lYkjCmTjGOuPVJ7U06cESnIVNga5vlaExOulLbzPkly+4Fl462N9HSDmBU/StqRDRf8KdOBeom6Pw1vMIUDyGO01LQz6MwFcrsqeENdXdYFW6l8tjRIQ56vH+sPwZGOgvhBLDamMcVWHxrQnBAARpMWVJcJ+EOhQSj+a7CXagDcTuFXOPmMa4xZpnChSJrmK88HrY2leO4fG4ymNcV8h5RjP3p1kn9lkq6zXxzx7qw4QErgCcahs/Jo9e1GY3RtEqJgSyBXoW0EcKrn1cltvPoH9A4KJuFWPkutgSRyaty6pgDDIVbFXXxj+fAy0gpCq6QdB23yG1Uub+uGGHoKgz1spEzCOG7t+UImaRBFWFf0rkru3L4wuJFHwawsoL/+sqh9UFgbWNkwyuGFQMsZU5hm/XM0gV1L+KZoPKlV3XAfJ+IqSZKVcy34g5e9k178VkVAa+wY7xe0bDHeSfTZeHqiAdZ40myi3tUsJiNpayu00thUMggM9HmMbK2+KTw69DsWc+BmspbZMXsEfRrCYwn7RROSfpZcrS81kEwBImTQsw2ydDUoldxYhuYINxvrC6KBpZDwho85W+lb0r5VtjX12pFcwBUT2kpV/VvSZxUIq0kHaNs4WUK9f11ZsrzBJI+vVohNe/mlpL/txW3qdt9W89aFgDj1hU5qQUlP/Wswz0RgHxONGaK+4eANe1GeC77WnpwOdJG1qa9NngQjz1ktyLfqMy/QGUCQ+REhK7IA1AS4l+yQQ0IVGlh2QLOfafEFWSiZrm9MRh1UpIaVMhp4QAaHcfd0spZL1aJPRapOHPxSc62tV6sU3gzUdNotBRJCWkL0mN6AncJkNkkwmTwVZpRqyCVM/WITZXK5OZ1HbvX1hhEkGsUKw/PmStigW2EZgNfbS9KVanx0QpJTL/WDqX1H5Jz+NXRo3No6HTgfLhVRvLy5XkpYII4MUguUXLftXNG5l+urmmfb9xqMCos1nWG5dYT5U2suiz7LGMY5AJ6uPLwicn5xpjEv6we/1YCikLdp+PdnLqnwSpn6wKLDQ24sQZDwdiHqyGOkR7B81Ae4k+5yOwIFSvlrc1kxIVt6nboJZeT2FLCvzCpgGt0Dufo3slzJek1zRRDCTgZWnahzcK9kAOkgW+/sEA6u0MFh7PSW9VO1lJiSr0rhssvx9PB5pauSGwU6EkcFa3leWCUgI3LyIWXmJRgJfyzOPeX+XgLxyEu9TmJYwE5KF98n19Wl9ZBk16ezF2wq+V2/Yjy5vFvGinuyt+ldHSLz8U6V/tYV0b1hw46OZwFW8dZV5VtG/Vo6SaIyLF7zhcBF5eNn3t2krdiyt7FXusyRCGA7lHFF2CbiV7EWEZDW4zSuzlffJB59V/a15YFlsDI5rKbzrSR4GWnkyJs/eKgowEfhChpHXvu7KpsgmWT6dD247GxgI3CrENRGS1UaX2UOyCLM7kMFyhpO9Vf7X5IFbRQEmAr+aZPLHIqLUjFmuxVmOCqLrZI6AqPyTR4M8JWAVBVTYS7wwEELQ48tjI6+7K92yH8yOkqRtsWiYD5uUjZ3hsEUqy2wvS89eIQqoYp5Vyo0Kz74AwK5gHkkaLD8C07IfRPZSc5RiNISBQE7ctglwJ9mLQlyrzjJ4SBLvkw9ufzkMk27MyTxKwSAY0chklo9lS09GEOYD1kSntZ1Psa7s8ggOL1cMWKvcZwIVHqVV1GQmcJUQ10Kut5iDnxSwoH0feP2sLlyUg67wwK32Q4wEPhNn3tbuajxV1VSD/nWz3IoFb/seZZc3i9Wcroo6IK4xL+ml0A+lDVNN3ytrRRQowa6gVQqlipy939Rn25xnlak3ra0g9dYfKCCJIOY3ee7eLmev2Ge6/s0ViljPB9DrFdirSXAn2WeT5UEC2EwakYckqtbQBnfAtIioeOAWEzxYZANqelOXAweUUg2W95zkzOTltZArmOC0KC7/FOaKVQncLmIwLzhyD/xaUjc0ZZ6q1F72Hvik1h+9PovNb1W5xMP2g7iugJhsRfYqZMq18Wa5frWoKeLJYD3vx2Y6V9ZXNXKzG+PcXisJJBBCv1+ga7ULHmDMrQOK88wqYkiw8wj83I3FPOvxZZGkQUwu6TaArVJvVeXsma4zq0nEaQhRkfPVJLiU7OPVkYzKymweWFZtzR64VfmnJndyQwt/q9m8sssV6wb3tOapSgnJ7FFK5Vax+S2LGMzgG9oB06Sx6IdrSQ8y+YK1DmZ7+YKs7l8ht35xnU1ssu1Ug2YDvqFttydjthcgjxgqPHBxP4RoxkReEnsVtM3NikjXYoxr9ppcSiCBDjF5ST1whXlWyz0ss1MnkRv1ZpFCEJeX9BU8VHz1ecXeiVXOPmGwVxIhhInkNHcT4E6yV90Y5IPb4CFJVmbzwALkIa7Zozd1gcgAACAASURBVATkqSRtAF1coygWqbW3XpH7tAlxtXbrySzm01oYL9PXTLQyHSoIqZPZUFb+qRIJ5dMAqCDlI49Y4sVA6UEZ0g14s70Ise0Hru+5VW3xrWrvRGIv85ixkmu2F2DbvyW52biw/NNfSCGFEC4vxstyFSq4SnKtosxAmbyyng54RRVJZntZlX9KU5UyHQhzavj3AuT2MqcfAeEYDxTTyBCTvaRyJXsnwhRoUmevOOLoQLAouT66CXAn2cs2Bs0dICRwycosInCZN2X2KEty5R7lWs6H65tptkkqK//MaYPbr6vWACyIQwuxlxNI0JDh84xyZR6limdvk8JQyUFnRfaSpWbYaxWel8qmnKXcMiFl8gVcWudkL7GXN8AO7en1lnr227CXlVzz+OIy9KAUJJ9EmujtZZeaUeiznJHAJ5cTKPoVI10rudWm3gKKUVNFulbeluSSIIEILuvTODIdRJGuqPyzWGApOc1eV5YTKPrC4sWxSXAf2VMq3hgs5ivvnhcSuB1xmCaYMPcq8ZAs5CYRxKSevGTelL7G3W4z1xAyajljmVzzgJW1lRKSqS2vcTcTeC5Z+UBmoUdp3Q9JhHST0cJegCCVZO1RTq8kUaQe5L0d1v2glwlYE5K5rXTvROR9qniUEh3yGRBaRLAjakzjZATeZ05kL0mNue5MQLFIcWU5DiKLmrYzz7jzI7NXNQup6hjPJuENRYzz0Uqu2V4iuaYzFJNLCQQ6bC49bDDcR/b8AIe+Y3lnmL0eEYH7w+XBqYeQwMPiPJ7Io/SHLT0ZQ5gdiEjkmlICvB5bqK8xZMySjrIMkb5+kb1UPMqwWIecYILzn83fTepRSr4XgI5w1OjZy+xllivtX+01X0dpklN/RG4vw5jhZCAZN+Yxw2WI5Irspbp3ImqrfU5ntKtsL3+YlX+avU/zoS7+s+h76fr3+mYa6VwR/lCn3F56HQFmM5m9PP7yyWCug8xe5r7Vfw+DXMH+kV43g9wEAh2duLaRZg8f90vGuGivqdS/4n4oOWDLcXREuljhh+zBOw2G+8jeXLoF6AgpIWlrmjSiDhASuMWAFekgGVjU40MopPNUrRYGva4eD/tdShxaiL2UQF9fT1mGSF8VAtf0VVoYhAQuWxgE9vKHJcTBXhvo61GzF/97SQfZwpAs1bhzud6QRf/qZfq0e3+kC4PAXkoELlkYikU2Rs32ErXVPqerqwdTKwnkC0XbhaFiwRFuTJajBL44BsPRKh0lBXsBFvMsqWYDoNJRslkYwhF2AObKsm5umPXlhyeFC7S4HxCIYCOVw3I8i2hXl1zfJsB9ZC/z5gALz17F+5QRuEK1Bn+fZMASfwT7BzsxuRwvv0/qyUSMr0mJrjy4J5fj2D3Qr8lQ8ewlNshnWTpsywRe5cJQzFdu/Gptd/X3Y3Ipzg6+WCykTJY5crPO6U4uJTDUFYTHamHYKiFZevYJsb1kpKzUD+z3vp5u5AoUc2sp+zFuTjvlknLnxx8upYcinVHrSNc8xlTsxb+bbOHX28Dj0areVPZOrDz7JDqj7PTh5aW4EoFXypUvpHxx7O7ukevQBLiP7IWbfZJJIyRwu5RPFSkBJU+GDdgbBiO4vKjTR8WjLMmVe6r5QhFTK0mMDfZoZYeylI+CvSwJXCU1Y5fyUVgYtN/3DPYhls5jKZ6xJlriZZupeh1sCHxyOY59AxGbCGuLhCQjDv6aimcvJE/ZQsp+H+zvA6CRV6l/q0i9mW+d1M2zyaU4OoM+hMKyctkEI2GPjk5UU5VcB+nCUMV8MC/6XDc9tMOTXV1d8BCwKM+OE5Q8+/J84ItjXw+Ptp2xSes+spelBAA1ApcuDAJCCnSyWyfNh17MBzi4XIsBe8NgJ+Y304hn8tpEqCbElefWp1eTyOaLODTcJZ5glKp79pYELvNkVBYGSa5Y/5kmHfYODwAAWyD59xJtOOqrNQBtw1G2kEZAKcXFhTgOD0WrIySb/i3B42VjoyIlkGNjSejZq3iU1gvpkJ7sS/0ri7BEC78scgvjwkIcB4c6QaqJhKyqcSoIvFM90pX2gzn1pp25qIhe2aLmC3Vib1/YtDhWYa8Krinz0oWFGAJeDwZ6e8VtmwT3kb1ss0//N3NbpYXBipAEg6Ai3WI1ESKlO8CvLCXkm2Lmk8FcB2lKIIyLC6yS4vBQVOyp5lIAqJq9hARulxKoZmEQeapiHcaHdwFgXjiTK3jgiygSku4FsH64tsEW3EPDUWsCF6XTpP3bWdlWSuDVb/axn60jrM5oNwY6A8yrtE29iRZ+wRjXTgZfWIiVF8dCtvK+GVEkZGkvQdQkTVWK5pnCpjq/clvqgXdi/0CE2cuOE1Q21XW8dGEhhht2dcIb6jT+rclwH9lbEpIkLaG8MOgOcBjkCghJFOaLav21AXtgF+v4Cwsxi4VBQl4WKYHz83EQAiZftDCI7OXxsvtmJCmB6haGaiIGxU11bxC7eyIIB7y4uBC3XhgqPEpre12YZ4vjIb44Svc4RB6lqa2oWoO3VUkJ+EJgl+1tw146QrphsLM8vvSfWSFXMfXmj2A5kcVKIouD3F76z9TroBwJyRZoycIgSuOY5YpOBpfkyu11YFcnLi/FWQkuYJmaMXw+182sK6B59nEcGuqU26tJcB/ZZ3WbnBw2KQElT0aYErAIs0V5R9DK2w61ATvRH0HA68H5hZiFJyMJh8266g5wXFiIsQd+BLzi3LaIwPnvVRF4bVIClXLFBO7xEBwaiuLc/KZ1hFXhUUaYbUS1/v4Isz+AQ7uiFguDpH8rUgKCk8G8rUpKgHuf1XiUFgR+ZDiKCwtxUH4ob7upN93iyDx7i3kmi7CEqbcqUmQqEZbIXoC4f3X2OjzchWy+iKm1jNj5sbKXZJ7FaQBX11PMmbCqemsCXEj21acElHKfMo8DEA+CioFlETEEwvB5PTiwqxPn5mM2noyoGkdO4OcXYmxg8e+mkhIAxNGFiJD8HRB6n9WmBPQng/WfISQO9rcjw1Gcn4+BWoXZokUMkKTeGHkNd4XQHfZbp96qIg7RZq4iIVkuDNWl3g4PdyGeyeN6ymv8W0luwngyWP8ZooXBz1ISAHBouNMmwhLYgBbFBx2FKR9B1CSKdEURlshegLh/dfY6Mszmzfn5mKR/q0+9XVpjVU0srWpREdQEuI/sLQlccKrNfICj2pQAICFwwYAFxGGjgbw22XvzaaP3KU0JyFMzOW8Hriwn2MDiOlRDSGZ7iQiJkCoIyZo4DFGTX9JnOgI/MhzFWjJXvqtd1aPknynQ4fxCjOXrub7m1JvoZDAgzhVLCdwqV6zevwZS9Pq1azbkJzcPa9+LE460Hwy6Wi2OEZxfiKM37MdgZ9B6nolsoP8uJR0kY9xsL9HhSa6vir1KcuWpygO7OuEhYHPScmHQp96sUz7nVtmcPjwcldurSXAf2YsqFWQdYEngiikBQELg1SwM7G+Hh6NY2GQ3FJb04xAd4OA6SDyOpYwXhSLFwSHdMzorvDndqUqDXEVPhv8uy+8rhbhxeT+Iogs/txc7lDLFT/PLUm8GufLKiqI/jEuLcRzS9k/gD1eeNJVFQjYpgYq20oVBMMZE9pLKlfSZr6NE9mdX8sa/6dvK7CUaN5pnf3AoCkJ0zyXe9jwTjHHzQUdLAlcct5YLQxghvxcTAxEWbVsuDPr9LslBx2wc8PhxfimNDr+XPYrQqgy3CXAf2b/iw8DHZowbqR6PPC0hChmBKlMCcgIvy5UtDOXBfWQ3Iy/+oBGDXNHA4r9LQsY57VrjwyVPVRDiispPAQjL3UQEXpIrsJf+6VdA+Z4TURpHVG6n/0y9voFyJAQAVzZoWY5ZX2XPPoHNQgCZfFHn2QsWBmlKwCo1o2Av6cIg6F9RqhKAsKyUjy+PB51BH/b2deDFxVz5bwa5krQI/5tJLtUqS0qRo+xZvKrzjJ8MFkWZ5rZSApfPB3HKR7YwMB1uHO5i+zg2C0OlXNG4ZfY6NNTJHkVo9eziJsB9ZO/1AaFuY0oAEK/MsioBQNHjsEoJSAZs1jS4BeR1NUHK+ull6j9TL9d80lT7jOkY4PMQ7B/QearKBC6yVxW5T9EEL8lVyOlalXRqf+uNBDDUFcQFnpYQevYKC7R2MngxzXLZhrSXWQcrAs8ljd7nlnLFChGD6GQwf68owtLJPDzUhXMLCXHqTWQvi43fDAkhls4b017a3yr0VZln0v0jUT9UE2FVYS+T3MPDUUyvJFHwWURuKtVD2nw4Px8v76Hxazbann2NIe0AU0d5A+LDFlWlBETVGoJw2PRot13RIHrCfkzzFJ7Bs5fk1kURg/bz5XWKfQMRBHye8ntlG3gqnqrUo1RcSLm+NoRk+AyblMDh4S6cXS6I26qm3rSfeURlSHuZ5Vp59oDxpOmWcsWivQDB9zKfDC7JtbbXkeEoJpcTbFNbZYG2OE3N90osF8eS3CoIXGWeWdnLfNBxS6k3JpdHxXEaEKfezCeD+XsF9ir4OrAcz5Qjba6vmzZoCSFvJIScJ4RcIoR8TPD3uwkhzxJC8oSQt9VeTQVIQyvTYJEetqgmJSBKSwhylKaBRQjBkeEoLmtPSRJ7lAqeKt8MWimYBpY2wfUbjlkZIUlSM+aTwXq5eogmONdXJafL7zmxSQkcGY6Wc9B6HfjJYBXPXvt5JgaM94cRDvjK3wuQRFgyQlJJNVSTEpB54JHK6FW4MCSM9todRaFIkfN2qHngMucnm8RKltmpnMYRkDI/GSwlcIG9tuvZm3WwcpRsqqJu1PaFNvJ+tXQtf6/AXimw1LJhTsrKrJsAW7InhHgBfAbAmwAcBfBOQshRU7MZAO8D8JVaK6gMWQpDREiy8E4aiurkWh3g4HJKMisH95HhLnG1hFVKoEJuOY1zfKRbp28YFSdNRQfLuE4quXVAHjFUMRHUUz5GQjoyHMV6XvNwDSkB7WSwShWI9vPlDYrje8z2gjqBc/1McoU5XfNJUykhVTFupQuD0V4Ae/iLUv/KnJ9cEvMpL/b2dbAyVf33FOXWVcqWpftHVhHW1uZZ6XPM1VbZpOGZwaO9HQgHvFjN+tXStSW5lW1jRWanY/oxJiuzbgJUPPs7AFyilE5SSrMAvgrgrfoGlNIpSunzAJp3cbOqRylrKyIk0UlT6cBSSwkcGY5iNecv66fXFbDYC6gMcZM0aCQvEdHxGnf9hjaXq5JbByxyxaKJIA5x5Skf64jhyHAXMvCDgiimBOT2mosTHBvpMn6+Xpb+5yoiLKUy3FyCjSVz1FSThbTcdqKfpfXixcDW+1crA76aIKbFUTDGpQRuYS/pZm7t5ln5vaaDjpzAtajJ4yGsSi7tUUvXcv0F82Et58dITwf6IqaL+VyUsx8BMKv7fU57rWoQQt5PCDlFCDm1tLS0FRFyCDtAsjKbSYYf4FBZGOxyujYpgeMj3czr0ssCFDzKygmWQhDH9ujIS0R0VikB80lTS4+ydoRklKvTlZ8M1hHSgV2dCPi8yHo6xPaqIiWQRNDodVWbEqiQW2XqTWovgfcpXUhFkVC5rc/rwY27u7CWE3iqqv2rnQy+nvQYx5fI+ZESuIW9qlkYtjjP2HslqSSTzON7unE14QFVSddynQTzYTnrM9qL6+SiahwieE3wtF17UEo/Ryk9SSk9OTg4uBURciikBIxtdR3AD3AIUz4RIXFUDm7BSVMBgR8aiiLnETxVyiolAAgnQk93D3r1XoQszJYNWL2O/H1b9MANcqvyKK0JPOBj5FWRlthCSiBFTYtjtSkBvY4luaaTwYA8YpClBMwnTaWRkFrq7cRIN5YzXlCVahyub0U0qC2O+jQh1zcrsJdKnb20usUqwlKoehOdDNZ/jnncmD7/ptFubOT9IOaDjlnFcQugmE1gOeM1plW5vi7y7OcA7NX9PgrgWn3U2Qaq8SjNbWUpAaByYZB54PzQiU1KIODzlK7vFS8MaiFuDj7cONpn0lUSZsuIQ68jf580R2nyPk0eZVmuyZPhJ4NV9gIkBH5ipBuxQgBUJSXAT5oKUgLhzi4MdAaNnw8o7p1IIgZ/WFwGXCHXIiVglrvNze+bRrsRKwaQS+tObvKTwVb9W5KppQlhShNyfQULQ4W+/KDjNlNvSudZrDxwvY78Z9Pn3zzaU36Gs3nhV9zDKqQTLK06Yvbs3ZWzfxrAQULIPkJIAMA7ADxYX7W2AHMHyA5wiNrKUgL8NZWcLmCxMBh1ODQyxFRUqUEWDNhsKo4kDQgmomBhsEoJ6HXk75MtDOaTpqqExE8Gq3iqkjMBN412I04DSMQ3jbryz7PTQft575Apmqy2zl6vI/9ZdSG1JSRB6q1CbqTypKmgf0+MdiNJQyikFSIhrq+AwAOhTgxGg8a2koWhQl9+0lQ0H6qpxvGZoiZFAmdyJWW4ps+/YTAivvmyitQbySWRRKhyTpr3sNKbwN+8E7j4SKXcOsOW7CmleQAfAvBtAGcBPEApPUMIuZ8Qch8AEEJeRgiZA/DzAP6CEHKmnkoLYSYOK2/dH4bhvgpLzz4iIfDOyrbmwS2Re3RsADnqxcbGuk6uTYir03dtfQ0JhHB8VBAy6nUELDxwiWcvs0GF3CpTMyJ7VaQExPY6Mcr2OZLxDaOugrZMB2OfpZJskdi/Z1elrnoduVyP33gyWNZWZoNAZZ+xhUEyZip0kPRZwNRnpb0mY9sDg53IekJiD1zF+dHm0S7+qEuzvqpyFeeD1F7+SGWNu7AfbOxl7l9TW5/Xo3uqlLnPJHKL+bLzUyzCV0yDBCLY1WUqhDDbK70BnH8IiDU+OeKzbwJQSh8C8JDptY/rfn4aLL3TPPAOyGfZRC3dLyIhGX0HZLS2wWhlW38YSOg2k7ncoEhuRCzXpAMnr9W1NfTq5QY6BQc4Kkk5trkOSjtw295eY1u/gJQzcSBkCi31cg2eTNyakHJJAH0sJZBLiu2lP2nq8Vj3gzklkBHb9sBgJ54iIWSSsfKLJbkiHYwL//XFZewHcGyfqa5A9EzTbFzet0ClvqLPFx0Yy8aB6G4LuSYd7Poh2Mny/MV8hb4+rweRzi74k7oSXCt7mRyl2MY6ogDGdu+qbFsRFW9hnpnb8lp/s1zLfjCNcdn4AgT9MFTRdGigD9gE8ul4mRSzCYm9dPPMFyzZoLe3r7KtLIsg0rfOaKETtKZBYOlRdkoGrMTrEXqq1UQBlZ5XEiFsbOg91bhYpoA4UvENFHzhcv1z6fMlG7SqIa7M+zTvBVjZgOvLT5pa2kuW9qokL18oinzGRIhSucYJtriygiIluGmicpIL+9fSBmZStvDsKxYGtf6Ve5QmHSzGeE9PN3zII5vJlHXVyzDINUZYV64vAABuGBHYS5Z6k84zk728gcqoiWj3yKiMW2mFjVU/2C+ko1qKb2Zhmb1AKZCNKUVYK2trAIAhq0iIp3ysFsc6o3XI3uypZjQvUOQdVNMB5pVZ5p3o5XJkY6xUzWskZZ/Xg6I/jFhMR/YyMjA905RSilwqBl9HFZ6MzOvSt6XUfsEpLaQ29tLLtYuazPaSyI10dsGTSyKVLZjk2kcM62urSJEQoh2ByrbmVFJGMsFFJ01tF2iV1IxpYSjktSuW7SIs6OxVKXdYI55zM9e176Vur5nriwCAA6PDAn0F9pLKNfevZCyW5Jq9ddX0Y0xtjFvIPTDCophLV9l3Rz6tXbFs4Shpcl+avgoAGB0akOigO+holRmoM1qH7M1VDXYepaEDbPLwZs9A1lYUskk61ReMIJ+OYzOdK7eVTQR/eYJdWU4gWEwhFOmubBcwkTLX1yrE5fbKpdjgFobOpkljZy+9DnYeuP6kqUWf9XR3owMZnJ5dN7a1qS4pFini8Q3kfYJ2/P0q0Y3opKmsf6URllXKx2QvqxSGQj+MDjGyf37qum1bc7XV/NIKAKBDNMYqqnES2onUUGXbio1ymzFesTAI7MWdH/NCKlvEAKXIbZf2wPYr15fK7QBJqtI4xi/NsUhoZEiQ9jLrkLGYD3VG65C9eTPGMkdp7gAL76RiwMaZh+cLVrY1Lwwy7wRAMBxFBzJ4dnqtLFfq9ZQn2LMz64ggja7unsp2omeaynSQ2kth0tjZC9ARkk0kBJRtZhEFDPT2ogMZPD21qsmNsXy7ubaay9V0vbQUR7CQhEfmSYn6VzYRhf2rEGFZRU3mhcFqcZTZS6BDV5SNj7PT85pcedSkP2maLxSxtqbZWDofzM5EtLL8FKhcSDMxuUdbdT9sYYwXctqhPXmfXV1YBqW0PMYVUm/TVxnZBzosFgaF1Fu90TpkL/OQlIjOKgcdMZ405V6EaHALB6xgAADojHYhTPTkJdmQ4t9N0/FHkyvo9KQR7eqtbGd+pmk+yy6pkoXY/PvwzwdswuG48T2WIa6CbaULTmXbYDjK7HVlpfweGRnoPPAfTa4gjAwCYcEmNSCuHhJ5c1xflRSZ18fSPpzockkA1Nr7VImaZPay6N/JqwsoFqlNP5T77MVrm/AXeWWYQoWNFSkLPfsqIizpwiCIsET24s6PeSG1cFJy6ThmV1M2/VB2flLZAq4tLcvlVswzi0W3zmgdsjfnPi1zlBJvSpYSAMqdJfPm+PtVcroAvMEIev15PH1lTSfXYtLkkqCU4olLy4iSDIiV16NE4FWEl+ZNRJWFoeR98ijAqqpBJ9fjF0dNgTC8KOLFmUXkC0Wmr9XiqH3+4xeX0efPIBCWEbhpU12Ws+f65hS8da6Ded/C0rO399aF9rKRm08ncGkprjYfsgk8cXEJEaTZFcnmyjD+WXrnx7YfqsnZK3jrJbmavYpFrfRSIfWmMMbDyOCpqVW1CCubwNNTqwgVtXSwyjyzWnTrjNYh+4oVVMWT0XWAqKZXL1e/MNhtMpU2fi28E38E3b4snptdQyyds8lnsgF7eSmBhY0kgjRt7X1WpARE3id/pqnJXiplhyo5e5XKHTPR2Xl+AGg2iedm163tpRFHvlDEv1xewWAgDyKzl8izV9lELGSFZY/lthFBPwh0MD9SU8H7VKo40+wVJhk8fnFZLWLIJfH4xWWMhIsgVrl1/WcrRli2bYX9oBBh5SzGbUmuSoUe06s/kMcTF5d0/WCVs0/iiUvL6PJk5HLN9srEwa7YCIv1rSNah+wrcp9VbiJaTVq9PLsBqz9pajkRwoiQLHIFih9cWrEnmVwCP7i0jDDSRr0qdIioEW1JbjUEXsUmokHu/27v3IPjqu47/jmrlbR6rR5+Sn7KvN/gGAolBRpCU2gCfSQzkE6apumkbZpOk3QmhaQlaTqZJmmbV4cpCSGP5klCQkIoBBxeQ4EAtgHbYGzZARvbsmVZllavXb1O/zjnaO+u7j3nrJCslXS/M5q9e/er3/729zvnd37nd869N6Jxhw0MtkEMqE+M8NjuLvugq6803X7wBP25MZqSIbekDsqdTkBy1V5DZ1hhu60SEXJ9ZljuAN6eJm+vkJ1hSq76ruxQhm0HTrCuIWKhPiC3QF/romtRySfSv4EZlnPWVOefKQf9a7OXTn7OaKng8T3HGM/aMvt8THiio5vTWxLR3FB7RSSWs4wFFOx1IzJTtYhtj0C+IRuutYRiHDuQf43khsmNHkSSY4M0VCd5fPdRIvf0Grm5AZ7o6Oa0JkvDMr/N1AVtJQFQNgvaK0puZS1q4Tfwu6K4kzbQ8kxQDlvjMB1/Uq7DBsAlbZU8+soxhx/U+WdfOYAQUCsjbpth5JrvHx/Tt9iwDPy5gK6B75r62wJynQGpvtBe5twUmSH2ipKr/3/jykqe+U0Po8MZu67AK/s7GR2XrEyNWXQN6WdR9qquV7Of0Wz+f6yzAC1zLKtvsWHh5nzbeNAPDp9V1bGhUXJiaJSDR7uiudpeA/297OrMcIZZPgsddEuw1yxj4QR7c5VoTu9dt5VQqg03k+dGOSClt59lDdeSnRjupA6WYJ9qRIxlufLURp565VD0tkeAVBqZy/DUvm6uWKe3uEVNcavThbqCVW6BDSBc30SiSK6Fmyq2rWXWZPyQDfgs0l6K++Y1VbzcmWEsa5Gr/bBl937OW9VIYnQo2l6pRhU4TO0XLHKb/Oxlfpuxl+1aA/PbckU+i8o+kzWF9hIJptx10/wu4NylMDI+QXdPj9MPu147SKoyQVNy1GKvWexn2Uz+xnlg72c+9grKNd8P1nazKjVKQsA+vZ0ycrusqOD1TrXTqT2NWgwO2xkWZq85qNfDQgr2yWqVyQc7WJRRwwK4rdNCvnFZ5ZrgFZQblU0pHa5pr2GgX+8dt+gwMdzH0Mg4V7XraaFNhykdIUqHdD5wuDKkArl622PxgzjM/4uEpx9CBgaHvTatVB0qN9jnHBgOdB7hbWevcMhNA/pqSdce6FTIQOplLx8/FA0Mvv51zJrW1o5RV1XB8Z4ep706DhzmytOXUTHqshel9zPbtkcjd2JUZfWuWVOoHyz65vzbeNXYABetbebAEUtmLwSk0nQe7WJVUw3LqkIeyxj8fvCz1yxj4QR7CO8IYaguHm1LCeCW7CQ4MIyNqNq9LasGrlxfbV/g0dyKiRGWpuC8ZTrA2rIpnwzc6FAckHzlRtlLCBVoch7c4o7gkdmvqR1l/ZJapK3TaLkNDHHdmY1EbnsMyCWb8cvWR/rVThSnvRqnOTA4Sj7FM7comRWVUFlLcnSAq89aQX+ml4mw3WZGJkA2w7Xnttp9NmWA9ukPfe6gXKofcsWzAIttff1QrWYM1567ksH+XmQiGb4zDJioStPf18PbzlmJiNoNBGrWlUgW2itqxjLLWGDBvtGvIySr9HQ4MNraOi34ZZ8FDdbVsBS3KTHMFevVNHwiYoU+W6Eaxw1n1ZMc0ws9tmzKdIScY09vsb0Sen+4TS7Y7RUmN3JXRZ26QG1SruWiG50lilyGGy5oo3pimAEZctVmgHvOEmhvkPnvCkNwgHbtlc+sYgAAE85JREFUgZ4MdD6zgEb/AF5sr8ra8FlTsVxXlphqhGwfN1zYRvXEECfGInyrbdBcMczVZy23+zeYrdu2PRZzbVs/obCf+QwME2Pqqm9XG68OSWgcM4a3n99GHTlyoiZ81gT0ylrq5CBvv6DVvjYnRJF/LetSs4yFFeyr034ZJWjHetTRJgN4n/1uj+b7Ddcnq9bca05VnO3HxkOp246q839ydmCxyVZTHR9R02FX1lNdbIOIkoCRm+0t5EahutFvcNTTYa8ZQ8C2f3TBMirFONu7xkKpe/rUb7imPeVnLy3Xy17FXJt/RwbUoq+rfFDgB0vgMHKzHvXygNwrTl9GOjHC/v5w3w6OwaBMcf7SBA2pSv/Za9S97IO6QpG9fLiONY5S/VCwFmDZ9qjttbIxxYa0pHe8mtHx8MdqHxquZEVVjovWNNnXpQJyAXffmUUsrGAf7Aiu7LN4xI8KBno67NdgS8lO8lnPpatUxvWzl/qm0CYmJA90qGz+rGb8apRaruJaGrcpH0hpz06M3ILsxDMg+fjBJ9CZ6XA2w/p6la0/+XqO3NjUAfK7L6hBaVNrRUl+8MrWoci/HkEx6m6PQbm+2bpvGQcm/VtZkWBZ9Siv9gte7R6cQrvrudfJUMs5S2Tgbo9Rv0v3k2yfR7ZeZAOwL5QXy52pfibHVd81to3a9phqnCztntGSoH+imgd2HplC27q/h85sJatqRhFC2BMamFqmizP7GcCUurIrIGXce3qN3JxnLREK646u7CSXmSzNPHUwx69/c7yAdt+OTnb3qoxM5DymwwUdwZGtVwemw67spJQG61vfD8q13e0R9FpAuqCDd+Uq+M7T+wto+44N8OOd6rtrxgc9svUie4HHLCAQZFxrAUZf10A6OqQWMV3Zuu+6lJGr/dAgcmRFDV/cvKeAMjwyzu2P72Ossp6lyaz9bo+gyktVDX619dCypk85zSU3MED79kkfP6TSqiwkJcurRxlL1vKVhzsKsnspJV/YvIeRZD1NicCNFH0TpZxlN98sY2EF+4I6qSv71Fzb3R4nuWm/OnxFUl1wkcv47SiAArkNDU3c+vOdDOZUeaJncIRP/+JllizVd9MLZjJRi20FmaqjPlicITnrv4FZgKtmX7D4bWncqSa/4BnUQXPXta7gy7/qYP9x1eHHJyQfu3s7yeoaZKJS+8FjcRT0zM21dz4QOHID0Xd7NLpCfsbgaoug/OUMSI2FgcPlM90fEqMDnLZmJfe+eFhdZKXx2Qd20dWfo6llWVFt3eazRr81jqoGQBT6wWuh3HfW1KdsFrXtMUyuK0mREzAygBgZYMXSJeztGuD2x/ZNUn6y7RBP7j1O++o2EsG9/j6xxiexnEUsvGBvFo6yfflOFAZTPjAlhJnimtq2ixusO2ruR66/mL1dA7zvW8/xy52dvPuOX5MZHuWj79hUyK2qj27ck3J73TYITp197GWmw0656fx2u5EBt9xcpgTb5u31rsvPoaJC8J47n+UXLx7mr76zla37T/CvN5yHSHn6LMQPkdwwe9lmTcVc2+8C7bNeh70a1YVfYyOefuhTCc34CBedtp4zVzbwoe8/z/ee2c9n/vdlvv30fv7i8nYa0i3T9kMkd/L6jOn6IR39/UGuy16+3CK5zUuWcf0Fbfzn5j18cfMevvXkq3z8pzu4pL2Fs9avVvbyiTV6oVwNvNLOnUUsrGBfnVaLRtleNULXhNwG2MAEpGF9I7KUjatHZsO1ym0slFsTcndKyE+HjVyR4M1nt/Mf77qAlw9n+OvvbuNw7zB3/vkmTlvTpv4nm4Hh3miZ5neB7rgObrDsNHzCX+7wCbu9TAAf1gu6M+WHSbn6yUArVnLney9mfELydz94nsd2d/HJd5zNH160aqofouRWptT1GUZuRXX4RUpQmK2XYq9sr90GBX7o85Ob7fPzb8AGlfXNfPN9F3PKsjo+cc9O7njiVW66ZC23XHfmG/LDjPjXXJ9h5FbVh1/9DiX6ITB79eXqfiZqmvn8O8/nD85v5csPd/CpX7zMxnVNfO09byJRo7f0ZnvVDKcEP1i5swivZ9DOGxhn9eo6rsuxpiM6uWnoPRAIXg7HBuVaB5FABpxqhESCP964mrecuZyOrgHOXNmgdkdMTDA5HXYF2uKOkF7l5ub61G/zkTtwVF0c47KtnIDMQfXexTWBy4fb82qBH97U1szD/3AlOw/1sbalNv/A52I/+AQkkyC4svWc1rcUPyw9zc0txb+Zgx4JTaPyVb9eZKxpprWxhns+eDk7DvWRrqmkfWldnluKHwaO+PWHYD8TibwNi5FIqNKRKT/6JClGrquPgfptw73QvN5PrvZDqrKC2969kY+8tZ/s6ATntKXVouyUWOPww0g/DOn1OJu+s4gFFuy1s3oP6Pe27KRRLYoN6PqlK/PK9nnOAtLKqa4scVJur1oUCzTuptoqLl7fkudNdoS+ErLEPpUlrjjXriuoTuDMEnXjPuHTuEvxgw7KQz0echtD/ZCqrGBT0F5GB8O1ZYlGh2yfWqy22SBZperDRq6PvUyQ8cnWh477ZYkQ8INHplrkh0RCcMGaIjuXmq137/GfBRh76YQmmmsGnD67THN9hpGbXm3/fvDzmbFX/5EpCc2py4vWMEryg+kPr7u5s4iFV8aBEh1wwI/rmyVOTtl0B4/KEovluhpAcCpo41bVUzAL8AkcGX1vHi97edi2ZD9I6POYBQSzdVuWaLg+ZS+jQ8l+KKGc5usHn2AwHT94zXTT6vqMwCzAKtfYy5XQTA66pfrB0sfMVdqzUfYC/5jgyy3FD7OIhRXsp3QEjwzYcF2zgLGsKmG4skTTYIdP2L/f6JD1mLoXyHV0BLMoNtSjskSfKa5Ptl4cwH3kzrQfzNa4oePuLDG4zuKy7bT84PCvuWmZKXv5lGZKsVcpfijFv5N+8FiAH+qxl72M3On4wdV3fP2gb1o2mdDMWLst8tlM+WEWsbCCvRkxuzv0+xY/biJpzxKNc7o77DKN3OETMNjtye1R3FoP7tBxxXfKbYLje9WxTW5VvXqAyfES7GW4NrnT9UMyZc8Sa5oBCcf3+dl2qAeGuqHWkUlN+uG4nx8Gu3WW6MHt9rBXdRoQpdmrFD+U4t/uDqWPLaGpaVY3Les94OmHE9oPJfQHH7n9nbrsZeEK4e+HVKCfg8NeRdyZ8sMsYmEF+wa9a+XQVjWa14c87d0g3ZrnNrTas8R0QK45tukwMQZHtru56VbIdELmsIfcVjiyQ021bYuuRt9DWwt1D4MQSu6hbW5u3VI1KE5yLToE/VBRbe8Ixba1ZYkNrYVcGxpa1RbFrl1+9uo7qBYdfeQefl5liT7+nfSDRYeKJNSv8PNZ/QpA+Pls0l7b1M6vqK2MQTm+bdyXm25VC9rde/24J15TA4PLZw1tfjYwcn1sW5lSgdjHZ8G2GHwfpSsofWta1PfMAbyCvRDi94UQu4UQe4UQN4d8Xi2EuEt//owQYv1MK+qF2hYVXEYGdACPuJkU5B05MuDRWNpmibtKZUgTo34ByVxs4qPDtLgWHRIVyqbm0v/aJdHc+uVqsDU2sAXwAnu5bLCqBG6JPjNXjvr4zMdeRu5M+yxZpexrLr6yzUhNAJrrNg5qS7SPvcwTnWa0jZfisyDXEsCralXGPjKgXqsibkkSlOPTbmcRzmAvhKgAbgOuBc4GbhJCnF1Eez9wQkp5KvBF4HMzragXhMgb1tUAapfk7/Do22C9uG3hxy6uLTOYooOLG5TrqUOi0h7AIa+jK4AnKqBhpeY6GnfdcrXYGtQlUtfA754tn/naq1gflw5O/2q5lbXui24Mt6HV7odkFdQtK/yfKDSUYtsg15WBnwSfzWg/09xUo/tKV6Ovq81U1eVLRK42M4vwyewvAfZKKX8jpRwBfgjcUMS5Afi2Pr4buFoIWyucRTSuUa9Na+w8IaB2aeH/RMHwAJrW2rnBz11yg5+79A1+7pQb0MF0dpfc2iXu52Iaruv7ARpXF/5PFCqS+eDmklu/cqouUSiwl8Nnwc9LkmvZ8geFv8e1A8O0m/rl9gAelOvSFfIBycVNVucffu6yVzC4zWi7DfaHEvqZK9gH5dpuxwF5fV2DQlCulx/apupykuET7FcBrwfeH9TnQjlSyjGgD3CkibOE5XrSseZSN7d5nXo95XftvEQif++LU662c+sCA8P6N9u5K88LHJ9v5wZl2dYiAE55i3pN1rgD+Ab921va7TyAtZep1+XFE7sQLD1dva77bTfXdFyjdxQqkoDw4wYDgEuHtgvzx8vOsnPbr8wfuwL4qbqt1C5xB/ANV6nXZg8/rL5YvbraDOQv5lr/O26uCVou2wZrzhscfadpXf54raNPrt6UP15yqp274ar8sevGYsYPPoHW+LflFDd31Ub12naRm9uyQb1uuNLOm01IKa1/wLuArwfevwf4ryLOS8DqwPt9wJIQWR8AtgBb1q5dK2cFA91SPnCzlNl+N/f4Pikf+mcpx0bd3INbpXz883467H1Yymfv8OPuuFvK7T/24z57h5Qdm/24j/+7lAe3uHljo1I+dKuyhQu5AWXbgWNubv9RKR+4RcrcoJt7rEPKzZ+UcnzMzT3wrJRPfMHNk1LKPQ9J+dw3/Lgv/kjKnff4cX/9VSn3PermTUxI+ehnpTz8gps7NiLlg/8kZc9rbm42o/wweNzNzXRK+cuPSzky7OYe3SXlrz4t5fi4m7v/aSn/78tunpRSvnK/lFv/x4/7/PelfPleP+5Tt0n56hNu3sSElI98RsrOHW7uaE7Zq/d1N3e4V8r7/1HKoRNubu9BJXc06+Y6AGyRjrgd9ifU/0ZDCHEZ8Ckp5dv0+1v0IPFvAc6DmvO0ECIJHAGWSYvwTZs2yS1btpQ+OsWIESPGIoYQYquUcpObWQifMs5zwGlCiHYhRBVwI3BvEede4L36+J3AI7ZAHyNGjBgxTi6c98aRUo4JIT4EPAhUAN+QUr4khPg0ajpxL3An8B0hxF6gBzUgxIgRI0aMMoHXjdCklPcD9xeduzVwnEXV9mPEiBEjRhliYV1BGyNGjBgxQhEH+xgxYsRYBIiDfYwYMWIsAsTBPkaMGDEWAeJgHyNGjBiLAM6Lqmbti4U4Buyf5r8vBbpnUJ2Thfmod6zzycN81DvW+eTB6L1OSum46dVUzFmwfyMQQmyZzhVkc435qHes88nDfNQ71vnk4Y3qHZdxYsSIEWMRIA72MWLEiLEIMF+D/dfmWoFpYj7qHet88jAf9Y51Pnl4Q3rPy5p9jBgxYsQoDfM1s48RI0aMGCVg3gV718PP5wpCiG8IIbqEEDsD51qEEJuFEB36tVmfF0KIr+jfsF0IsXGOdF4jhHhUCLFLCPGSEOLv54neKSHEs0KIF7Xe/6LPt+sH3ncIIe7St+RGCFGt3+/Vn6+fC721LhVCiOeFEPfNB52FEK8JIXYIIV4QQmzR58q6fWhdmoQQdwshXtHt+7Jy1lsIcYa2sfnLCCE+PKM6T+eJJ3P1h7rF8j5gA1AFvAicPdd6ad2uADYCOwPnPg/crI9vBj6nj68DHkA9Y+9S4Jk50rkV2KiPG4A9qIfKl7veAqjXx5XAM1qfHwE36vO3A3+jjz8I3K6PbwTumsN28lHg+8B9+n1Z6wy8BiwtOlfW7UPr8m3gL/VxFdA0H/TW+lSgHgC1biZ1nrMfNE0jXAY8GHh/C3DLXOsV0Gd9UbDfDbTq41Zgtz7+KnBTGG+O9f85cM180huoBbYBv4W64CRZ3FZQz2K4TB8nNU/Mga6rgYeBtwD36Y5a7jqHBfuybh9AGni12F7lrnfg+38PeHKmdZ5vZRyfh5+XE1ZIKTsB9Kt5UnjZ/Q5dJrgIlSWXvd66HPIC0AVsRs34eqV64H2xbpN668/7gCUnV2MAvgR8DJjQ75dQ/jpL4CEhxFYhxAf0uXJvHxuAY8A3dcns60KIOspfb4MbgR/o4xnTeb4FexFybj5uJyqr3yGEqAd+AnxYSpmxUUPOzYneUspxKeWFqGz5EuCsMJp+nXO9hRBvB7qklFuDp0OoZaOzxuVSyo3AtcDfCiGusHDLReckqqT631LKi4BBVAkkCuWiN3rN5nrgxy5qyDmrzvMt2B8E1gTerwYOz5EuPjgqhGgF0K9d+nzZ/A4hRCUq0H9PSvlTfbrs9TaQUvYCj6Hqlk1CPfAeCnWb1Ft/3oh6fObJxOXA9UKI14Afoko5X6K8dUZKeVi/dgH3oAbWcm8fB4GDUspn9Pu7UcG/3PUGNahuk1Ie1e9nTOf5Fux9Hn5eTgg+iP29qJq4Of9nekX9UqDPTNVOJoQQAvX84F1Syi8EPip3vZcJIZr0cQ3wVmAX8CjqgfcwVW/ze94JPCJ1ofNkQUp5i5RytZRyPardPiKl/FPKWGchRJ0QosEco2rJOynz9iGlPAK8LoQ4Q5+6GniZMtdb4ybyJRyYSZ3nahHiDSxeXIfaNbIP+MRc6xPQ6wdAJzCKGnXfj6qxPgx06NcWzRXAbfo37AA2zZHOb0ZN/bYDL+i/6+aB3ucDz2u9dwK36vMbgGeBvahpcLU+n9Lv9+rPN8xxW7mK/G6cstVZ6/ai/nvJ9Ldybx9alwuBLbqN/AxoLne9UZsNjgONgXMzpnN8BW2MGDFiLALMtzJOjBgxYsSYBuJgHyNGjBiLAHGwjxEjRoxFgDjYx4gRI8YiQBzsY8SIEWMRIA72MWLEiLEIEAf7GDFixFgEiIN9jBgxYiwC/D8dyS2o7xf4eAAAAABJRU5ErkJggg==\n", "text/plain": [ "