Commit 04ffa56d by Jan-Bernhard Kordaß

### Added first lecture on harmonic maps.

parent ac43f39b
 \tableofcontents \chapter{Tosion Invariants} \chapter{Tosion Invariants [Roman Sauer]} Torsion invariants fall into a class of so-called secondary invariants'' of topological spaces in the sense that they are only defined if a certain class of primary invariants'' (e.g. Betti numbers) vanish. Often they reveal more subtle geometric information. ... ... @@ -156,6 +156,185 @@ Thus, this number only depends on the homotopy class of $f$. Hence, the diagonal matrix entries of each $C_i^{CW}(g)$ are zero and thus $\Lambda(g) = \Lambda(f) = 0$. \end{proof} \chapter{Harmonic Maps [Andy Sanders]} \section{Basics of harmonic maps} \subsection{Background differential geometry} Let $E \to M$ be an $\R$-vector bundle over $M$ (second countable, hausdorff manifold) of rank $r$. A \CmMark{connection} $\nabla$ on $E$ is an $\R$-linear map \begin{align*} \nabla \colon \Omega^0(E) \to \Omega^0(\T^{*}M \otimes_{\R} E) =: \Omega^1(M,E), s \mapsto \nabla_{\blank} s \end{align*} where $\Omega^0(E)$ denotes smooth sections in $E$, such that \begin{enumerate} \item $\nabla_{X+Y}s = \nabla_Xs + \nabla_Ys$, \item $\nabla_X(s+s') = \nabla_X s + \nabla_Xs'$ \item $\nabla_{fX} s = f\nabla_Xs$ \item $\nabla_X(fs) = f\nabla_Xs + X(f) s$. \end{enumerate} Let $q$ be an inner product on $E$. We say that $\nabla$ is a \CmMark{metric connection} for $q$, if for all $s,t \in \Omega^0(E)$ we have \begin{align*} \dop q(s,t) = q(\nabla s,t) + q(s, \nabla t). \end{align*} \begin{expl*} Let $(M,g)$ be a riemannian manifold with tangent bundle $E = \T M$ and Levi-Civita connection $\nabla$ of $g$. Let $X,Y \in \Omega^0(M)$ be vector fields, i.e. $X = X^i \frac{\partial}{\partial x^i}$ and $Y = Y^j \frac{\partial}{\partial x^j}$ in local co-ordinates. (Abbreviate $\partial_i$ for $\frac{\partial}{\partial x^i}$.) \begin{align*} \nabla_XY = \nabla_{X^i\partial_i} Y^i\partial_i = X^i(\nabla_{\partial_i}Y^i\partial_i) = X^i(\partial_iY^i\partial_i + Y^i\nabla_{\partial_i}\partial_i) = X^i(\partial_iY^i\partial_i + Y^i\Gamma_{ij}^k\partial_i) \end{align*} where $\Gamma_{ij}^k = g^{km}(\partial_ig_{im} + \partial_j g_{im} - \partial_mg_{ij})$ for $g_{ij} = g(\partial_i,\partial_j)$ and $g^{km}$ is the $km$-entry of $g^{-1}$. \end{expl*} Out of $E$ one can build another bundle $E^{*} = \Hom(E,\R)$ and given another vector bundle $F$, one can build $\Hom(E,F)$, \begin{dfn*} Let $(E,\nabla) \to M$ be a vector bundle with a connection over $M$. The space of \CmMark{$p$-forms} on $m$ with values in $E$ is the $C^{\infty}(M)$-module $\Omega^p(M,E) = \Omega^0(M,\bigwedge^p\T^{*}M \otimes E)$. Elements $\alpha$ in $\Omega^p(M,E)$ have representations as linear combination of $\alpha_{i_1,\cdots,i_p}\dop x^{i_1} \wedge \cdots \wedge \dop x^{i_p} \otimes (s_1, \cdots s_p)$. \end{dfn*} \begin{dfn*} The exterior covariant derivative is the map given by extension of \begin{align*} \dop^{\nabla} \colon \Omega^p(M,E) & \to \Omega^{p+1}(M,E),\\ \alpha \otimes u & \mapsto \dop^{\nabla}(\alpha \otimes u) = \dop \alpha \otimes u + (-1)^p \alpha \wedge \nabla u \end{align*} for $\alpha \in \bigwedge^p\T^{*}M$, $u \in \Omega^0(E)$. \end{dfn*} We want to define an inner product on $\Omega^p(M,E)$. For this, fix a metric $g$ on $M$ and let $(E,\nabla,q) \to M$ be a vector bundle with metric and connection over $M$. \begin{align*} \left< \alpha \otimes u, p \otimes v\right> = \int_M g(\alpha,p) q(u,v) \dop v_g \end{align*} is a number. (For this integral to be finite, assume $M$ is compact or work with compactly supported sections.) \begin{dfn*} The \CmMark{exterior covariant codifferential}\footnote{non-standard notation} is the formal $L^2$-adjoint of $d$ \begin{align*} \delta^{\nabla} \colon \Omega^p(M,E) \to \Omega^p(M,E) \end{align*} such that $\left< \dop^{\nabla}(\alpha \otimes u), \beta \otimes v\right> = \left<\alpha \otimes u, \delta^{\nabla}(\beta \otimes v)\right>$. \end{dfn*} \begin{rem*}[Fact] An integration by parts arguement shows that $\delta^{\nabla}$ exists and, when $\nabla$ is a metric connection, then \begin{align*} \delta^{\nabla} \colon \Omega^1(M,E) \to \Omega^0(M,E), \ \alpha \otimes u \mapsto -\tr_g(\nabla^{\T^{*} \otimes E} \alpha \otimes u), \end{align*} where for $\Omega^1(M,E) \to \Omega^0(M, \T^{*}M \otimes \T^{*}M \otimes E)$, we can take a trace with the metric by choosing an orthonormal basis. \end{rem*} \begin{dfn*} A \CmMark{harmonic $p$-form} with values in $E$ is an element $\omega_i \in \Omega^p(M,E)$ such that $\delta^{\nabla} = \delta^{\nabla} \omega = 0$. As a matter of fact this is equivalent to $\Delta \omega = 0$ for $\Delta := \delta^{\nabla} \circ \dop^{\nabla} + \dop^{\nabla} \circ \delta^{\nabla}$ (Consider $\left<\Delta \omega, \omega\right>$ and utilize the obvious stuff). \end{dfn*} \subsection{Definition of harmonic maps of 1st variation formula} Let $(M,g)$ and $(N,h)$ be two riemannian manifolds and let $f \colon M \to N$ be a smooth map. Then $\dop f \colon \T M \to \T N$ is an element $\dop f \in \Omega^0(\Hom(\T M, f^{*}\T N)) = \Omega^0(\T^{*}M \otimes f^{*}\T N)$. Next, the metrics $g,h$ induce a metric on $\T^{*}M \otimes f^{*}\T N$. \begin{dfn*} The energy density of $f \colon M \to N$ is $e(f) := \frac{1}{2} \left< \dop f, \dop f\right>_{\T^{*}M \otimes f^{*}\T N} = \frac{1}{2} \|\dop f\|^2$. \end{dfn*} Choose co-ordinates $\{x^i\}$ in $M$ and $\{y^i\}$ in $N$. With respect to these, we have \begin{align*} \frac{1}{2} \|\dop f \|^2 = \frac{1}{2}y^{ij} \partial_if^{*}\partial_jf^{\beta}h_{\alpha\beta}(f). \end{align*} \begin{dfn*} The \CmMark{Dirlichlet energy} is given by \begin{align*} E \colon C^2_0(M,N) \to \R, \ f \mapsto \int_M e(f) \dop V_g. \end{align*} A \CmMark{critical map} (or \CmMark{stationary map}) is a map $f \colon M \to N$ such that for all compactly supported $F \colon M \times (-\varepsilon, \varepsilon) \to N$ $C^2$-map (variation of $f$) with $F(x,0) = f(x)$ we have that \begin{align}\label{eq:first-variation} \delta E(\nu) := \left.\frac{\dop}{\dop t} E(F) \right|_{t = 0} = 0 \end{align} for $\nu = \frac{\dop}{\dop t} F|_{t = 0} \in \Omega^0(f^{*}\T N)$. The \cref{eq:first-variation} is called \CmMark{first variation in the direction of $\nu$}. \end{dfn*} \begin{dfn*} The map $f \colon (M,g) \to (N,h)$ is called \CmMark{harmonic}, if it is a critical point for the Dirlichlet energy. \end{dfn*} \begin{dfn*} Let $\dop f \in \Omega^1(M, f^{*}\T N)$ then $\nabla \dop f \in \Omega^0(M, \T^{*}M \otimes \T^{*}M \otimes E)$. The \CmMark{second fundamental form} of $f$ is $\nabla \dop f := B_f$, which is a symmetric $2$-tensor on $M$. \end{dfn*} \begin{dfn*} The \CmMark{tension field} of $f$ is the trace of $B_f$: $\tau(f) := \tr_g(B_f) \in \Omega^0(M,f^{*}\T N)$. \end{dfn*} \begin{thm*}[1st variation of $E$] Let $F \colon M \times (\varepsilon, \varepsilon) \to N$ a variation of $f$ and let $\nu = \frac{\dop}{\dop t}F|_{t = 0}$. Then \begin{align*} \delta E(\nu) = \frac{\dop}{\dop t}E(F)|_{t = 0} = - \int_M \left<\tau(f), \nu\right> \dop v_g. \end{align*} \end{thm*} \begin{proof} The variation $F \colon M \times (-\varepsilon,\varepsilon) \to N$ yields a pullback connection on $F^{*}\T N$, which shows \begin{align*} \frac{\dop}{\dop t}E(F)|_{t = 0} & = \frac{1}{2} \int_M \frac{\dop}{\dop t}\left<\dop F, \dop F\right> \dop V_g|_{t = 0} = \int_M \left<\nabla_{\frac{\partial}{\partial t}}\dop F, \dop F\right> \dop V_g|_{t = 0}\\ & = \int_M \left<\nabla^{f^{*}\T N}\nu, \dop f\right> \dop V_g \overset{(*)}{=} \int_M \left<\nu, \delta^{\nabla^{f^{*}\T N}} \dop f\right> \dop V_g\\ & = -\int_M \left< \nu, \tr_g(\nabla \dop f) \right> \dop V_g = - \int_M \left< \nu, \tau(f)\right> \dop V_g, \end{align*} where $(*)$ follows by a calculation in local co-ordinates. \end{proof} \begin{cor*}[Fundamental theorem of the calculus of variations] A $C^2$-map $f \colon (M,g) \to (N,h)$ is harmonic if and only if $\tau(f) = 0$. \end{cor*} What does $\tau(f) = 0$ look like? Fix local co-ordinates $\{x^i\}$ on $M$ and $\{y^j\}$ on $N$. Then $\dop f = \partial_if^{alpha} \dop x^i \otimes \frac{\partial}{\partial y^{\alpha}}$ and thus \begin{align*} \nabla \dop f & = \nabla \partial_i f^{\alpha} \dop x^i \otimes \frac{\partial}{\partial y^{\alpha}} = \partial_j\partial_i f^{\alpha} \dop x^j \otimes \dop x^i \otimes \frac{\partial}{\partial y^{\alpha}} + \partial_if^{\alpha} \nabla \dop x^i \otimes \frac{\partial}{\partial y^{\alpha}}\\ & = A + \partial_i f^{\alpha}(\nabla \dop x^i \otimes \frac{\partial}{\partial y^{\alpha}} + \dop x^i \otimes \nabla \frac{\partial}{\partial y^{\alpha}})\\ & = A + \partial_i f^{\alpha}( -\Gamma^i_{jk} \dop x^i \otimes \dop x^k \otimes \frac{\partial}{\partial y^{\alpha}} + \dop x^i \partial_j f^{\beta} \Gamma^{\gamma}_{\alpha\beta} \frac{\partial}{\partial y^{\gamma}})\\ & = \partial_i \partial_jf^{\gamma} \Gamma_{ij}^k \partial_k f^{\gamma} + \Gamma_{\alpha\beta}^{\gamma}(f) \partial_jf^{\alpha}\partial_if^{\beta)} \dop x^i \otimes \dop x^j \otimes \frac{\partial}{\partial y^j}. \end{align*} Thus $\tau(f) = (\Delta_gf^{\gamma} + \Gamma_{\alpha\beta}^{\gamma}(f) \partial_if^{\alpha}\partial_jf^{\beta}g^{ij})$. %%% Local Variables: %%% mode: latex %%% TeX-master: "skript-rtg-lectures-ws1617" ... ...
 \begin{titlepage} \begin{center}\Large \begin{center}\large % \includegraphics[scale=0.45]{kit-logo.jpg} % \hfill ... ... @@ -7,14 +7,16 @@ \vspace*{3cm} {\Large \textsc{Notes}}\\[0.8cm] {\huge \textsc{RTG Lectures}}\\[0.8cm] \textsc{Prof. Dr. R. Sauer and Dr. A. Sanders} {\huge \textsc{RTG Lectures}}\\[1.2cm] {\Large \textsc{Torsion Invariants}}\\ \textsc{Prof. Dr. R. Sauer}\\[1.2cm] {\Large\textsc{Harmonic maps}}\\ \textsc{Dr. A. Sanders} \vfill \textsc{Winter 2016/17}\\[0.5cm] \textsc{Torsion Invariants | Harmonic maps}\\[0.7cm] \vspace{2cm} \textsc{Winter 2016/17} \vspace{3cm} \end{center} \end{titlepage} ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!