Commit fe4faa19 authored by Jan-Bernhard Kordaß's avatar Jan-Bernhard Kordaß
Browse files

Minor corrections.

parent c64bf571
\chapter{Tosion Invariants [Roman Sauer]}
\chapter{Torsion Invariants [Roman Sauer]}
Torsion invariants fall into a class of so-called ``secondary invariants'' of topological spaces in the sense that they are only defined if a certain class of ``primary invariants'' (e.g. Betti numbers) vanish.
Often they reveal more subtle geometric information.
......@@ -865,7 +865,7 @@ where $\tilde \Gamma$ are the Christoffel symbols on $(N,h)$.
\Gamma_{ij}^k = \frac{g^{km}}{2}(\partial_ig_{im} + \partial_jg_{im} - \partial_m(g_{ij})
($=0$ in $\{g_{ij}\}$ is constant)\todo{repair} and $\{g_{ij}\} = g_{11} = f(\partial_t,\partial_t) = \dop t^2(\partial_t,\partial_t) = 1$.
($=0$ if $\{g_{ij}\}$ is constant) and $\{g_{ij}\} = g_{11} = f(\partial_t,\partial_t) = \dop t^2(\partial_t,\partial_t) = 1$.
\tau(\eta)^{\gamma}\partial_{\gamma} = (\ddot \eta^{\gamma} + \tilde \Gamma_{\alpha\beta}^{\gamma}(\eta) \dot\eta^{\alpha}\dot\eta^{\beta})\partial_{\gamma} = 0,
......@@ -1098,7 +1098,7 @@ Then we can calculate
where $\Ric^g \colon \T M \otimes \T M \to \R$ is the Ricci tensor, $R^h$ is the full curvature tensor of $(N,h)$ and $\{e_1, \ldots, e_m\}$ is an orthonormal frame of $N$.
The latter summand is $\operatorname{const} \sec^h(\operatorname{span}(\dop f_t(e_i),\dop f_t(e_j)))$.
We continue
We continue\footnote{TODO: According to Andy, who erased this part very quickly, there should be some mistake somewhere here...}
\leq -\sum_{i = 1}^m h(\sum_{j=1}^m \dop f_t(\Ric^g(e_i,e_j)e_j),\dop f_t(e_i))
\leq C \sum_{i,j = 1}^m h(\dop f_t(e_i, \dop f_t(e_j))
......@@ -6,10 +6,10 @@
% \includegraphics[scale=0.15]{mathe-logo.jpg}
{\Large \textsc{Notes taken at the}}\\[0.8cm]
{\huge \textsc{RTG Lectures of the RTG 2227}}\\[2.2cm]
{\Large \textsc{on the subjects of}}\\[1.8cm]
{\large \textsc{Notes taken at the}}\\[0.8cm]
{\Huge \textsc{RTG Lectures}}\\[2.2cm]
{\large \textsc{on the subjects of}}\\[1.8cm]
{\Large \textsc{Torsion Invariants}}\\
\textsc{by Prof. Dr. R. Sauer}\\[1.2cm]
{\Large\textsc{Harmonic maps}}\\
......@@ -17,7 +17,7 @@
\textsc{\Large Karlsruhe and Heidelberg}\\[0.4cm]
\textsc{\Large Karlsruhe and Heidelberg}\\[0.5cm]
\textsc{\Large Winter 2016/17}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment