Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
Mpp
MLUQ
Commits
79c1540b
Commit
79c1540b
authored
Aug 24, 2020
by
niklas.baumgarten
Browse files
worked on slides
parent
976a60fc
Changes
3
Hide whitespace changes
Inline
Side-by-side
tex/slides.tex
deleted
100644 → 0
View file @
976a60fc
\documentclass
[18pt]
{
beamer
}
\usepackage
{
defs
}
\usepackage
{
templates/beamerthemekit
}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
{
Outline
}
\tableofcontents
\end{frame}
\section*
{
Elliptic model problem
}
\input
{
src/model
_
problem
}
\input
{
src/example
_
fields
}
\section*
{
Monte Carlo methods
}
\input
{
src/monte
_
carlo
_
methods
}
\input
{
src/experimental
_
setup
}
\section*
{
Intro
}
\input
{
src/numerical
_
results
}
\section*
{
Stochastic Linear Transport problem
}
\section*
{
Stochastic Convection-Diffusion-Reaction problem
}
\section*
{
Acoustic wave propagation
}
% \input{src/alternative_acoustic}
\section*
{
Outlook and Conclusion
}
% \input{src/outlook}
\begin{frame}
{
References
}
\bibliographystyle
{
acm
}
\tiny
{
\bibliography
{
lit
}}
\end{frame}
\section*
{
Backup
}
% \input{src/the_random_field_model}
% \input{src/circulant_embedding}
% \input{src/weak_formulation}
% \input{src/existence}
% \input{src/regularity}
% \input{src/finite_element_error}
% \input{src/mlmc_algorithm}
\end{document}
\ No newline at end of file
tex/src/model_problem.tex
→
tex/src/
elliptic_
model_problem.tex
View file @
79c1540b
File moved
tex/src/monte_carlo_methods.tex
View file @
79c1540b
\begin{frame}
{
Monte Carlo Method
s
I
}
\begin{frame}
{
Multilevel
Monte Carlo Method I
}
\begin{itemize}
\item
Goal: Estimate
$
\EE
[
\goal
]
$
, where
$
\goal
$
is some functional of the random
\item
Goal: Estimate the expectation
$
\EE
[
\goal
(
\omega
)]
$
, where
$
\goal
$
is some
functional of the random
solution
$
u
(
\omega
, x
)
$
.
\item
Assume
$
u
_
h
(
\omega
, x
)
$
is the corresponding FEM solution with the
convergence rate
$
\alpha
$
, thus
\begin{equation*}
\vert
\mathbb
{
E
}
[
\goal
_
h -
\goal
]
\vert
\lesssim
h
^
\alpha
,
\quad
\vert
\mathbb
{
E
}
[
\goal
_
h -
\goal
]
\vert
\lesssim
N
^{
-
\alpha
}
,
\quad
N =
\dim
(V
_
h)
\end{equation*}
where , the cost to solve one realization is
\begin{equation*}
\mathcal
{
C
}
(
\goal
_
h)
\lesssim
h
^{
-
\gamma
}
,
\quad
\mathcal
{
C
}
(
\goal
_
h)
\lesssim
N
^{
\gamma
}
\end{equation*}
\item
Assume:
$
u
_
h
(
\omega
, x
)
$
is the corresponding FEM solution with the
convergence rate
$
\alpha
>
0
$
, i.e.
\begin{equation}
\label
{
eq:alpha-assumption
}
\abs
{
\EE
[\goal_h - \goal]
}
\lesssim
h
^
\alpha
,
\quad
\abs
{
\EE
[\goal_h - \goal]
}
\lesssim
N
^{
-
\alpha
}
,
\quad
N =
\dim
(V
_
h)
\end{equation}
and that the cost for one sample can be bounded with
$
\gamma
>
0
$
by
\begin{equation}
\label
{
eq:gamma-assumption
}
\cost
(
\goal
_
h(
\omega
_
m))
\lesssim
h
^{
-
\gamma
}
,
\quad
\cost
(
\goal
_
h)
\lesssim
N
^{
\gamma
/ d
}
\end{equation}
and the variance of the difference
$
\goal
_{
h
_
l
}
-
\goal
_{
h
_{
l
-
1
}}$
decays with
\begin{equation*}
\norm
{
\mathbb
{
V
}
[
\goal
_{
h
_
l
}
-
\goal
_{
h
_{
l-1
}}
]
}
\lesssim
h
^
\beta
,
\quad
\vert
\mathbb
{
V
}
[
\goal
_{
h
_
l
}
-
\goal
_{
h
_{
l-1
}}
]
\|
\lesssim
N
^{
-
\beta
}
.
\end{equation*}
\begin{equation}
\label
{
eq:beta-assumption
}
\abs
{
\mathbb
{
V
}
[
\goal
_{
h
_
l
}
-
\goal
_{
h
_{
l-1
}}
]
}
\lesssim
h
^
\beta
,
\quad
\abs
{
\mathbb
{
V
}
[
\goal
_{
h
_
l
}
-
\goal
_{
h
_{
l-1
}}
]
}
\lesssim
N
^{
-
\beta
/ d
}
\end{equation}
\end{itemize}
\end{frame}
\begin{frame}
{
Monte Carlo Method
s I
I
}
\begin{frame}
{
Multilevel
Monte Carlo Method
I
}
\begin{itemize}
\item
The
standard
Monte Carlo estimator for the approximated functional is
\item
The Monte Carlo estimator for the approximated functional is
\begin{equation*}
\widehat
{
Q
}_{
h,M
}^{
MC
}
=
\frac
{
1
}{
M
}
\sum
_{
i
=1
}^
M
Q
_
h(
\omega
_
i).
\widehat
{
\goal
}_{
h,M
}^{
MC
}
=
\frac
{
1
}{
M
}
\sum
_{
m
=1
}^
M
\goal
_
h(
\omega
_
m)
\end{equation*}
\item
The RMSE is then given by
\item
The
root mean square error (
RMSE
)
is then given by
\begin{equation*}
e(
\widehat
{
Q
}^{
MC
}_{
h,M
}
)
^
2 =
\mathbb
{
E
}
\left
[ (\widehat{Q}^{MC}_{h,M} - \mathbb{E}[Q]
)
^
2
\right
] =
\underbrace
{
M
^{
-1
}
\mathbb
{
V
}
[Q
_
h]
}_{
\text
{
estimator error
}}
+
\underbrace
{
\left
(
\mathbb
{
E
}
[Q
_
h - Q]
\right
)
^
2
}_{
\text
{
FEM error
}}
.
e(
\widehat
{
\goal
}^{
MC
}_{
h,M
}
)
^
2 =
\EE
\left
[ (\widehat{\goal}^{MC}_{h,M} - \EE[\goal]
)
^
2
\right
] =
\underbrace
{
M
^{
-1
}
\VV
[\goal_h]
}_{
\text
{
estimator error
}}
+
\underbrace
{
\left
(
\EE
[Q_h - Q]
\right
)
^
2
}_{
\text
{
FEM error
}}
.
\end{equation*}
\item
This yields a cost of (
$
\mathcal
{
C
}_
\epsilon
(
\widehat
{
Q
}_
h
)
$
is the cost to achieve
$
e
(
\widehat
{
Q
}_
h
)
<
\epsilon
$
)
\item
This yields a total cost of (
$
\cost
_
\epsilon
(
\widehat
{
Q
}_
h
)
$
is the cost to
\item
achieve
$
e
(
\widehat
{
Q
}_
h
)
<
\epsilon
$
)
\begin{equation*}
\
mathcal
{
C
}
(
\widehat
{
Q
}^{
MC
}_{
h,M
}
)
\lesssim
M
\cdot
N
^
\gamma
,
\quad
\
mathcal
{
C
}
_{
\epsilon
}
(
\widehat
{
Q
}^{
MC
}_{
h,M
}
)
\lesssim
\epsilon
^{
-2 -
\frac
{
\gamma
}{
\alpha
}}
.
\
cost
(
\widehat
{
Q
}^{
MC
}_{
h,M
}
)
\lesssim
M
\cdot
N
^
\gamma
,
\quad
\
cost
_{
\epsilon
}
(
\widehat
{
Q
}^{
MC
}_{
h,M
}
)
\lesssim
\epsilon
^{
-2 -
\frac
{
\gamma
}{
\alpha
}}
.
\end{equation*}
\end{itemize}
\end{frame}
...
...
@@ -63,20 +72,20 @@
\begin{itemize}
\item
The RMSE is then given by
\begin{equation*}
e(
\widehat
{
Q
}^{
MLMC
}_{
h,
\{
M
_
l
\}
_{
l=0
}^
L
}
)
^
2 =
\mathbb
{
E
}
\left
[( \widehat{Q}^{MLMC}_{h,\{ M_l \}_{l=0}^L} - \mathbb{E}[Q]
)
^
2
\right
] =
\underbrace
{
\sum
_{
l=0
}^
L
\frac
{
1
}{
M
_
l
}
\
mathbb
{
V
}
[Y
_
l]
}_{
\text
{
estimator error
}}
+
\underbrace
{
\left
(
\mathbb
{
E
}
[Q
_
h - Q]
\right
)
^
2
}_{
\text
{
FEM error
}}
.
e(
\widehat
{
Q
}^{
MLMC
}_{
h,
\{
M
_
l
\}
_{
l=0
}^
L
}
)
^
2 =
\mathbb
{
E
}
\left
[( \widehat{Q}^{MLMC}_{h,\{ M_l \}_{l=0}^L} - \mathbb{E}[Q]
)
^
2
\right
] =
\underbrace
{
\sum
_{
l=0
}^
L
\frac
{
1
}{
M
_
l
}
\
VV
[Y_l]
}_{
\text
{
estimator error
}}
+
\underbrace
{
\left
(
\mathbb
{
E
}
[Q
_
h - Q]
\right
)
^
2
}_{
\text
{
FEM error
}}
.
\end{equation*}
\item
This leads leads to a better computational cost since:
\begin{itemize}
\item
Assume
$
Q
_
h
\rightarrow
Q
$
, then
$
\
mathbb
{
V
}
[
\left
(
Q
_{
h
_
l
}
(
\omega
_
i
)
-
Q
_{
h
_{
l
-
1
}}
(
\omega
_
i
)
\right
)]
\rightarrow
0
$
.
\item
Assume
$
Q
_
h
\rightarrow
Q
$
, then
$
\
VV
[
\left
(
Q
_{
h
_
l
}
(
\omega
_
i
)
-
Q
_{
h
_{
l
-
1
}}
(
\omega
_
i
)
\right
)]
\rightarrow
0
$
.
\item
The
$
Q
_{
h
_
0
}
(
\omega
_
i
)
$
are not getting more expensive for more accuracy.
\item
The optimal choice for the sequence
$
M
_
l
$
is given by
\begin{equation*}
M
_
l =
\left\lceil
2
\epsilon
^{
-2
}
\sqrt
{
\frac
{
\
mathbb
{
V
}
[Y
_
l]
}{
\mathcal
{
C
}
_
l
}}
\left
(
\sum
_{
l=0
}^
L
\sqrt
{
\
mathbb
{
V
}
[Y
_
l]
\mathcal
{
C
}
_
l
}
\right
)
\right\rceil
.
M
_
l =
\left\lceil
2
\epsilon
^{
-2
}
\sqrt
{
\frac
{
\
VV
[Y_l]
}{
\cost
_
l
}}
\left
(
\sum
_{
l=0
}^
L
\sqrt
{
\
VV
[Y_l]
\cost
_
l
}
\right
)
\right\rceil
.
\end{equation*}
\end{itemize}
\item
This gives an overall cost of (given
$
\
mathcal
{
C
}
_{
\epsilon
}$
is best case)
\item
This gives an overall cost of (given
$
\
cost
_{
\epsilon
}$
is best case)
\begin{equation*}
\
mathcal
{
C
}
(
\widehat
{
Q
}^{
MLMC
}_{
h,
\{
M
_
l
\}
_{
l=0
}^
L
}
) =
\sum
_{
l=0
}^
L M
_
l
\
mathcal
{
C
}
_
l,
\quad
\
mathcal
{
C
}
_{
\epsilon
}
(
\widehat
{
Q
}^{
MLMC
}_{
h,
\{
M
_
l
\}
_{
l=0
}^
L
}
)
\lesssim
\epsilon
^{
-2
}
.
\
cost
(
\widehat
{
Q
}^{
MLMC
}_{
h,
\{
M
_
l
\}
_{
l=0
}^
L
}
) =
\sum
_{
l=0
}^
L M
_
l
\
cost
_
l,
\quad
\
cost
_{
\epsilon
}
(
\widehat
{
Q
}^{
MLMC
}_{
h,
\{
M
_
l
\}
_{
l=0
}^
L
}
)
\lesssim
\epsilon
^{
-2
}
.
\end{equation*}
\end{itemize}
\end{frame}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment