mnsolver.cpp 8.95 KB
Newer Older
1
#include "solvers/mnsolver.h"
2
3
4
5
6
7
8
#include "entropies/entropybase.h"
#include "fluxes/numericalflux.h"
#include "io.h"
#include "optimizers/optimizerbase.h"
#include "quadratures/quadraturebase.h"
#include "settings/config.h"
#include "solvers/sphericalharmonics.h"
9
#include "toolboxes/textprocessingtoolbox.h"
10

11
// externals
12
#include <mpi.h>
steffen.schotthoefer's avatar
steffen.schotthoefer committed
13

14
#include <fstream>
15
16
//#include <chrono>

17
MNSolver::MNSolver( Config* settings ) : Solver( settings ) {
steffen.schotthoefer's avatar
steffen.schotthoefer committed
18

19
20
21
    // Is this good (fast) code using a constructor list?
    _nMaxMomentsOrder = settings->GetMaxMomentDegree();
    _nTotalEntries    = GlobalIndex( _nMaxMomentsOrder, int( _nMaxMomentsOrder ) ) + 1;
22
23
24
25
26
27
28

    // build quadrature object and store quadrature points and weights
    _quadPoints       = _quadrature->GetPoints();
    _weights          = _quadrature->GetWeights();
    _nq               = _quadrature->GetNq();
    _quadPointsSphere = _quadrature->GetPointsSphere();
    _settings->SetNQuadPoints( _nq );
29

steffen.schotthoefer's avatar
steffen.schotthoefer committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    // transform sigmaT and sigmaS in sigmaA.
    _sigmaA = VectorVector( _nEnergies, Vector( _nCells, 0 ) );    // Get rid of this extra vektor!

    for( unsigned n = 0; n < _nEnergies; n++ ) {
        for( unsigned j = 0; j < _nCells; j++ ) {
            _sigmaA[n][j] = 0;    //_sigmaT[n][j] - _sigmaS[n][j];
            _sigmaS[n][j] = 1;
        }
    }

    // Initialize Scatter Matrix
    _scatterMatDiag    = Vector( _nTotalEntries, 1.0 );
    _scatterMatDiag[0] = 0.0;    // First entry is zero by construction.

44
45
46
47
48
    // Initialize Entropy
    _entropy = EntropyBase::Create( _settings );

    // Initialize Optimizer
    _optimizer = OptimizerBase::Create( _settings );
steffen.schotthoefer's avatar
steffen.schotthoefer committed
49

50
51
    // Initialize lagrange Multiplier
    _alpha = VectorVector( _nCells, Vector( _nTotalEntries, 0.0 ) );
52
53

    // Initialize and Pre-Compute Moments at quadrature points
54
55
    _basis = new SphericalHarmonics( _nMaxMomentsOrder );

56
    _moments = VectorVector( _nq, Vector( _nTotalEntries, 0.0 ) );
57
    ComputeMoments();
58
59
60

    // Solver output
    _outputFields = std::vector( _nTotalEntries, std::vector( _nCells, 0.0 ) );
steffen.schotthoefer's avatar
steffen.schotthoefer committed
61
62
}

63
64
65
MNSolver::~MNSolver() {
    delete _entropy;
    delete _optimizer;
66
    delete _basis;
67
}
68

steffen.schotthoefer's avatar
steffen.schotthoefer committed
69
70
71
72
73
74
int MNSolver::GlobalIndex( int l, int k ) const {
    int numIndicesPrevLevel  = l * l;    // number of previous indices untill level l-1
    int prevIndicesThisLevel = k + l;    // number of previous indices in current level
    return numIndicesPrevLevel + prevIndicesThisLevel;
}

75
void MNSolver::ComputeMoments() {
steffen.schotthoefer's avatar
steffen.schotthoefer committed
76
    double my, phi;
77
78

    for( unsigned idx_quad = 0; idx_quad < _nq; idx_quad++ ) {
79
80
        my  = _quadPointsSphere[idx_quad][0];
        phi = _quadPointsSphere[idx_quad][1];
81

82
        _moments[idx_quad] = _basis->ComputeSphericalBasis( my, phi );
83
    }
84
85
86
87
88
}

Vector MNSolver::ConstructFlux( unsigned idx_cell ) {

    // ---- Integration of Moment of flux ----
89
    double entropyL, entropyR, entropyFlux;
90

91
    Vector flux( _nTotalEntries, 0.0 );
92

93
    for( unsigned idx_quad = 0; idx_quad < _nq; idx_quad++ ) {
94
95
96

        entropyFlux = 0.0;    // Reset temorary flux

97
98
        entropyL = _entropy->EntropyPrimeDual( blaze::dot( _alpha[idx_cell], _moments[idx_quad] ) );

99
100
101
102
103
        for( unsigned idx_neigh = 0; idx_neigh < _neighbors[idx_cell].size(); idx_neigh++ ) {
            // Store fluxes in psiNew, to save memory
            if( _boundaryCells[idx_cell] == BOUNDARY_TYPE::NEUMANN && _neighbors[idx_cell][idx_neigh] == _nCells )
                entropyR = entropyL;
            else {
104
                entropyR = _entropy->EntropyPrimeDual( blaze::dot( _alpha[_neighbors[idx_cell][idx_neigh]], _moments[idx_quad] ) );
105
            }
106
            entropyFlux += _g->Flux( _quadPoints[idx_quad], entropyL, entropyR, _normals[idx_cell][idx_neigh] );
107
        }
108
        flux += _moments[idx_quad] * ( _weights[idx_quad] * entropyFlux );
109
110

        // ------- Relizablity Reconstruction Step ----
111
    }
112
    return flux;
113
114
}

115
116
void MNSolver::ComputeRealizableSolution( unsigned idx_cell ) {
    double entropyReconstruction = 0.0;
117
    _sol[idx_cell]               = 0;
118
    for( unsigned idx_quad = 0; idx_quad < _nq; idx_quad++ ) {
119
        // Make entropyReconstruction a member vector, s.t. it does not have to be re-evaluated in ConstructFlux
120
        entropyReconstruction = _entropy->EntropyPrimeDual( blaze::dot( _alpha[idx_cell], _moments[idx_quad] ) );
121
        _sol[idx_cell] += _moments[idx_quad] * ( _weights[idx_quad] * entropyReconstruction );
122
123
124
    }
}

steffen.schotthoefer's avatar
steffen.schotthoefer committed
125
126
127
128
129
130
131
132
void MNSolver::Solve() {

    int rank;
    MPI_Comm_rank( MPI_COMM_WORLD, &rank );

    auto log = spdlog::get( "event" );

    // angular flux at next time step (maybe store angular flux at all time steps, since time becomes energy?)
133
    VectorVector psiNew = _sol;
steffen.schotthoefer's avatar
steffen.schotthoefer committed
134
135
136
    double dFlux        = 1e10;
    Vector fluxNew( _nCells, 0.0 );
    Vector fluxOld( _nCells, 0.0 );
137
    VectorVector solTimesArea = _sol;
steffen.schotthoefer's avatar
steffen.schotthoefer committed
138
139

    double mass1 = 0;
steffen.schotthoefer's avatar
steffen.schotthoefer committed
140
    for( unsigned i = 0; i < _nCells; ++i ) {
141
142
        _solverOutput[i] = _sol[i][0];
        mass1 += _sol[i][0] * _areas[i];
steffen.schotthoefer's avatar
steffen.schotthoefer committed
143
144
    }

145
146
147
148
149
    dFlux   = blaze::l2Norm( fluxNew - fluxOld );
    fluxOld = fluxNew;

    Save( -1 );

steffen.schotthoefer's avatar
steffen.schotthoefer committed
150
151
152
153
    if( rank == 0 ) log->info( "{:10}   {:10}", "t", "dFlux" );
    if( rank == 0 ) log->info( "{:03.8f}   {:01.5e} {:01.5e}", -1.0, dFlux, mass1 );

    // Loop over energies (pseudo-time of continuous slowing down approach)
154
    for( unsigned idx_energy = 0; idx_energy < _nEnergies; idx_energy++ ) {
steffen.schotthoefer's avatar
steffen.schotthoefer committed
155

156
        // ------- Reconstruction Step ----------------
157

158
        _optimizer->SolveMultiCell( _alpha, _sol, _moments );
159

160
161
        // Loop over the grid cells
        for( unsigned idx_cell = 0; idx_cell < _nCells; idx_cell++ ) {
162

163
164
            // ------- Relizablity Reconstruction Step ----

165
            ComputeRealizableSolution( idx_cell );
166
167

            // ------- Flux Computation Step --------------
168

169
170
            // Dirichlet Boundaries are finished now
            if( _boundaryCells[idx_cell] == BOUNDARY_TYPE::DIRICHLET ) continue;
steffen.schotthoefer's avatar
steffen.schotthoefer committed
171

172
            psiNew[idx_cell] = ConstructFlux( idx_cell );
173

174
            // ------ Finite Volume Update Step ------
175

176
177
178
            // NEED TO VECTORIZE
            for( unsigned idx_system = 0; idx_system < _nTotalEntries; idx_system++ ) {

179
                psiNew[idx_cell][idx_system] = _sol[idx_cell][idx_system] -
180
                                               ( _dE / _areas[idx_cell] ) * psiNew[idx_cell][idx_system] /* cell averaged flux */
181
                                               - _dE * _sol[idx_cell][idx_system] *
182
183
                                                     ( _sigmaA[idx_energy][idx_cell]                                    /* absorbtion influence */
                                                       + _sigmaS[idx_energy][idx_cell] * _scatterMatDiag[idx_system] ); /* scattering influence */
184
            }
steffen.schotthoefer's avatar
steffen.schotthoefer committed
185
        }
186

187
        // pseudo time iteration output
188
        double mass = 0.0;
189
190
        for( unsigned idx_sys = 0; idx_sys < _nTotalEntries; idx_sys++ ) {
            for( unsigned idx_cell = 0; idx_cell < _nCells; ++idx_cell ) {
Steffen Schotthöfer's avatar
Steffen Schotthöfer committed
191
192
193

                fluxNew[idx_cell] = _sol[idx_cell][0];    // zeroth moment is raditation densitiy we are interested in

194
195
196
197
                _solverOutput[idx_cell] = _sol[idx_cell][0];
                mass += _sol[idx_cell][0] * _areas[idx_cell];
                _outputFields[idx_sys][idx_cell] = _sol[idx_cell][idx_sys];
            }
steffen.schotthoefer's avatar
steffen.schotthoefer committed
198
        }
199

steffen.schotthoefer's avatar
steffen.schotthoefer committed
200
201
        dFlux   = blaze::l2Norm( fluxNew - fluxOld );
        fluxOld = fluxNew;
202
        if( rank == 0 ) log->info( "{:03.8f}   {:01.5e} {:01.5e}", _energies[idx_energy], dFlux, mass );
203
        Save( idx_energy );
204

205
        WriteNNTrainingData( idx_energy );
206
207
208

        // Update Solution
        _sol = psiNew;
steffen.schotthoefer's avatar
steffen.schotthoefer committed
209
210
    }
}
211
212
213
214
215
216
217

void MNSolver::Save() const {
    std::vector<std::string> fieldNames{ "flux" };
    std::vector<double> flux;
    flux.resize( _nCells );

    for( unsigned i = 0; i < _nCells; ++i ) {
218
        flux[i] = _sol[i][0];
219
220
221
222
223
224
225
226
227
228
229
230
    }
    std::vector<std::vector<double>> scalarField( 1, flux );
    std::vector<std::vector<std::vector<double>>> results{ scalarField };
    ExportVTK( _settings->GetOutputFile(), results, fieldNames, _mesh );
}

void MNSolver::Save( int currEnergy ) const {
    std::vector<std::string> fieldNames{ "flux" };
    std::vector<std::vector<double>> scalarField( 1, _solverOutput );
    std::vector<std::vector<std::vector<double>>> results{ scalarField };
    ExportVTK( _settings->GetOutputFile() + "_" + std::to_string( currEnergy ), results, fieldNames, _mesh );
}
231
232
233
234
235
236
237

void MNSolver::WriteNNTrainingData( unsigned idx_pseudoTime ) {
    std::string filename = "trainNN.csv";
    std::ofstream myfile;
    myfile.open( filename, std::ofstream::app );

    for( unsigned idx_cell = 0; idx_cell < _nCells; idx_cell++ ) {
238
        myfile << 0 << ", " << _nTotalEntries << "," << idx_pseudoTime;
239
        for( unsigned idx_sys = 0; idx_sys < _nTotalEntries; idx_sys++ ) {
240
            myfile << "," << _sol[idx_cell][idx_sys];
241
        }
242
        myfile << " \n" << 1 << ", " << _nTotalEntries << "," << idx_pseudoTime;
243
        for( unsigned idx_sys = 0; idx_sys < _nTotalEntries; idx_sys++ ) {
244
            myfile << "," << _alpha[idx_cell][idx_sys];
245
        }
246
        myfile << "\n";
247
248
249
    }
    myfile.close();
}