Commit 148aafc6 authored by Tianbai Xiao's avatar Tianbai Xiao
Browse files

Finish theory documentation

parent 3018795e
Pipeline #138016 passed with stage
in 19 minutes and 17 seconds
......@@ -57,9 +57,6 @@ The resulting executable will automatically be placed in the `code/bin` folder.
Execute the compiled binary from the `bin` folder and hand over a valid *TOML*-styled config file.
Example from inside the `code` directory:
......@@ -75,56 +72,6 @@ OMP_NUM_THREADS=N mpirun -np J ./KiT-RT ../input/example.cfg
with `N` equal to the number of shared memory threads and `J` equal to the number of distrubuted memory threads.
As VTK is not available on the bwUniCluster, it needs to be installed first. This just needs to be done once. Example:
.. code-block:: bash
module load devel/cmake/3.16
module load compiler/gnu/9.2
wget --no-check-certificate --quiet
tar xzf VTK-8.2.0.tar.gz
mkdir VTK-build
cd VTK-build
make -j
make install
cd -
rm -r VTK-8.2.0 VTK-build
Example for build and run on bwUniCluster:
Get the code
.. code-block:: bash
git clone KiT-RT
cd KiT-RT/
git submodule init
git submodule update
Append ``HINTS VTK_INSTALL_DIR` to the ``find_package( VTK ... )`` line in the CMakeLists.txt. E.g.:
.. code-block:: bash
find_package( VTK REQUIRED COMPONENTS vtkIOGeometry vtkFiltersCore HINTS ~/VTK-install )
Compile it
.. code-block:: bash
module load devel/cmake/3.16
module load compiler/gnu/9.2
module load mpi/openmpi/4.0
cd code/build/release/
cmake -DCMAKE_BUILD_TYPE=Release ../../
make -j
......@@ -138,7 +85,3 @@ After compiling the framework as described above just run:
The ``unit_tests`` executable will also be placed in in the build folder.
......@@ -124,7 +124,8 @@ into :eq:`CSD3`, which yields
.. math::
:label: CSD4
-S(E)\partial_E\widehat{\psi}(E,x,\Omega)+\Omega\cdot\nabla_x \frac{\widehat{\psi}(E,x,\Omega)}{\rho}+\Sigma_t(E)\widehat{\psi}(E,x,\Omega) = \int_{\mathbb{S}^2}\Sigma_s(E,\Omega\cdot\Omega')\widehat{\psi}(E,x,\Omega')d\Omega'.
& -S(E)\partial_E\widehat{\psi}(E,x,\Omega)+\Omega\cdot\nabla_x \frac{\widehat{\psi}(E,x,\Omega)}{\rho}+\Sigma_t(E)\widehat{\psi}(E,x,\Omega) \\
& = \int_{\mathbb{S}^2}\Sigma_s(E,\Omega\cdot\Omega')\widehat{\psi}(E,x,\Omega')d\Omega'.
Now, to get rid of the stopping power in front of the energy derivative, we make use of the transformation
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment