where the left and right hand sides model particle transports and collisions correspondingly.
The distribution function :math:`f` is the probability of finding a particle with certain location, and :math:`\{v, v_*\}` denotes the velocities of two classes of colliding particles.
...
...
@@ -44,18 +44,18 @@ The collision kernel :math:`k` models the strength of collisions at different ve
Different collision models can be inserted into the Boltzmann equation.
In the KiT-RT solver, we are interested in the linear Boltzmann equation, where the particles don't interact with one another but scatter with the background material.
Therefore, the Boltzmann can be simplified as the linear equation with respect to :math:`f`.
Therefore, the Boltzmann can be simplified as the linear equation with respect to :math:`f`
.. math::
\partial_{t} f(v)+v \cdot \nabla_{x} f(v)=\int k\left(v, v^{\prime}\right)\left(f\left(v^{\prime}\right)-f(v)\right) d v^{\prime}-\tau f(v)
\partial_{t} f(v)+v \cdot \nabla_{x} f(v)=\int k\left(v, v^{\prime}\right)\left(f\left(v^{\prime}\right)-f(v)\right) d v^{\prime}-\tau f(v).
For convenience, it is often reformulated with polar coordinates :math:`\{r, \phi, \theta \}`.
For convenience, it is often reformulated with polar coordinates :math:`\{r, \phi, \theta \}`,
.. math::
&\left[\frac{1}{v(E)} \partial_{t} +\Omega \cdot \nabla+\Sigma_t (r, E, t)\right] \psi(r, \Omega, E, t) \\
&=\int_{0}^{\infty} d E^{\prime} \int_{\mathcal R^2} d \Omega^{\prime} \Sigma_{s}\left(r, \Omega^{\prime} \bullet \Omega, E^{\prime} \rightarrow E\right) \psi\left(r, \Omega^{\prime}, E^{\prime}, t\right) + Q(r, \Omega, E, t)
&=\int_{0}^{\infty} d E^{\prime} \int_{\mathcal R^2} d \Omega^{\prime} \Sigma_{s}\left(r, \Omega^{\prime} \bullet \Omega, E^{\prime} \rightarrow E\right) \psi\left(r, \Omega^{\prime}, E^{\prime}, t\right) + Q(r, \Omega, E, t).
The particle distribution :math:`\psi(r, \Omega, E, t)` here is often named as angular flux, :math:`\{\Sigma_s, \Sigma_t \}` are the scattering and total cross sections correspondingly, and :math:`Q` denotes a source term.
...
...
@@ -104,7 +104,7 @@ Leaving out the superscript :math:`H_2O`, the CSD equation can be simplified as
Here, we define :math:`\widetilde\Sigma_{t}(\widetilde E):=\Sigma_t(E(\widetilde E))` and :math:`\widetilde\Sigma_{s}(\widetilde E,\Omega\cdot\Omega'):=\Sigma_s(E(\widetilde E),\Omega\cdot\Omega')`. Finally, to obtain a positive sign in front of the energy derivative, we transform to
Then, with $\bar{\psi}(\bar{E},x,\Omega):=\widetilde{\widehat{\psi}}(\widetilde{E}(\bar{E}),x,\Omega)$ and $\bar\Sigma_{t}(\bar E):=\widetilde{\Sigma}_t(\widetilde{E}(\bar{E}))$ as well as $\bar\Sigma_{s}(\bar E,\Omega\cdot\Omega'):=\widetilde{\Sigma}_s(\widetilde{E}(\bar{E}),\Omega\cdot\Omega')$ equation \eqref{eq:CSD4} becomes
Then, with :math:`\bar{\psi}(\bar{E},x,\Omega):=\widetilde{\widehat{\psi}}(\widetilde{E}(\bar{E}),x,\Omega)`, :math:`\bar\Sigma_{t}(\bar E):=\widetilde{\Sigma}_t(\widetilde{E}(\bar{E}))` as well as :math:`\bar\Sigma_{s}(\bar E,\Omega\cdot\Omega'):=\widetilde{\Sigma}_s(\widetilde{E}(\bar{E}),\Omega\cdot\Omega')` equation \eqref{eq:CSD4} becomes
.. math::
:label: CSD6
...
...
@@ -176,7 +176,7 @@ Dropping the bar notation and treating :math:`\bar E` as a pseudo-time :math:`t`