Commit 148ccb61 authored by tills's avatar tills
Browse files
parents 180bba46 d21fa4b6
......@@ -82,9 +82,27 @@ Second Model: 3-dim. Clustering with pre height before emptying, mean emptying i
**Regression**
XGB Regression with grid search to find the best parameters.
XGB Regressor for prediction of heigth for a container at a specific time. Parameters were optimized by a Grid Search.
For Visualization shap.TreeExplainer is used.
Results:
- MSE: 170.76
- Mean Error: 9.5
Results of the relevant predictions (prediction or original value > 100):
![relevantPredictions](https://git.scc.kit.edu/ufesk/bda-analytics-challenge-template/-/raw/master/notebooks/pictures/relevantPredictions.PNG)
We used Shapley Values to extract the Feature Importance:
![featureImportance](https://git.scc.kit.edu/ufesk/bda-analytics-challenge-template/-/raw/master/notebooks/pictures/featureImportance.png)
This plot also shows the impact of a feature on the model prediction:
- Each dot represents one data instance
- Red dot -> high feature value
- Blue dot -> low feature value
- X-Axis position indicates the impact on the output model
![image-20210705112027118](https://git.scc.kit.edu/ufesk/bda-analytics-challenge-template/-/raw/master/notebooks/pictures/image-202107159.PNG)
......
# This file may be used to create an environment using:
# $ conda create --name <env> --file <this file>
# platform: win-64
argon2-cffi=20.1.0=py38h2bbff1b_1
async_generator=1.10=pyhd3eb1b0_0
attrs=21.2.0=pyhd3eb1b0_0
backcall=0.2.0=pyhd3eb1b0_0
blas=1.0=mkl
bleach=3.3.0=pyhd3eb1b0_0
ca-certificates=2021.7.5=haa95532_1
certifi=2021.5.30=py38haa95532_0
cffi=1.14.6=py38h2bbff1b_0
cloudpickle=1.6.0=pypi_0
colorama=0.4.4=pyhd3eb1b0_0
cycler=0.10.0=pypi_0
decorator=5.0.9=pyhd3eb1b0_0
defusedxml=0.7.1=pyhd3eb1b0_0
entrypoints=0.3=py38_0
et_xmlfile=1.1.0=py38haa95532_0
freetype=2.10.4=hd328e21_0
icc_rt=2019.0.0=h0cc432a_1
icu=58.2=ha925a31_3
importlib-metadata=3.10.0=py38haa95532_0
importlib_metadata=3.10.0=hd3eb1b0_0
intel-openmp=2021.2.0=haa95532_616
ipykernel=5.3.4=py38h5ca1d4c_0
ipython=7.22.0=py38hd4e2768_0
ipython_genutils=0.2.0=pyhd3eb1b0_1
ipywidgets=7.6.3=pyhd3eb1b0_1
jdcal=1.4.1=py_0
jedi=0.17.0=py38_0
jinja2=3.0.1=pyhd3eb1b0_0
joblib=1.0.1=pyhd3eb1b0_0
jpeg=9b=hb83a4c4_2
jsonschema=3.2.0=py_2
jupyter_client=6.1.12=pyhd3eb1b0_0
jupyter_core=4.7.1=py38haa95532_0
jupyterlab_pygments=0.1.2=py_0
jupyterlab_widgets=1.0.0=pyhd3eb1b0_1
kiwisolver=1.3.1=py38hd77b12b_0
libpng=1.6.37=h2a8f88b_0
libsodium=1.0.18=h62dcd97_0
libtiff=4.2.0=hd0e1b90_0
llvmlite=0.36.0=pypi_0
lz4-c=1.9.3=h2bbff1b_0
m2w64-gcc-libgfortran=5.3.0=6
m2w64-gcc-libs=5.3.0=7
m2w64-gcc-libs-core=5.3.0=7
m2w64-gmp=6.1.0=2
m2w64-libwinpthread-git=5.0.0.4634.697f757=2
markupsafe=2.0.1=py38h2bbff1b_0
matplotlib=3.4.2=pypi_0
matplotlib-base=3.3.4=py38h49ac443_0
mistune=0.8.4=py38he774522_1000
mkl=2021.2.0=haa95532_296
mkl-service=2.4.0=py38h2bbff1b_0
mkl_fft=1.3.0=py38h277e83a_2
mkl_random=1.2.2=py38hf11a4ad_0
msys2-conda-epoch=20160418=1
nbclient=0.5.3=pyhd3eb1b0_0
nbconvert=6.1.0=py38haa95532_0
nbformat=5.1.3=pyhd3eb1b0_0
nest-asyncio=1.5.1=pyhd3eb1b0_0
notebook=6.3.0=py38haa95532_0
numba=0.53.1=pypi_0
numpy=1.20.2=py38ha4e8547_0
numpy-base=1.20.2=py38hc2deb75_0
olefile=0.46=py_0
openpyxl=3.0.7=pyhd3eb1b0_0
openssl=1.1.1k=h2bbff1b_0
packaging=21.0=pyhd3eb1b0_0
pandas=1.2.4=py38hd77b12b_0
pandocfilters=1.4.3=py38haa95532_1
parso=0.8.2=pyhd3eb1b0_0
pickleshare=0.7.5=pyhd3eb1b0_1003
pillow=8.0.0=py38hca74424_0
pip=21.1.3=py38haa95532_0
plotly=4.14.3=pyhd3eb1b0_0
prometheus_client=0.11.0=pyhd3eb1b0_0
prompt-toolkit=3.0.17=pyh06a4308_0
pycparser=2.20=py_2
pygments=2.9.0=pyhd3eb1b0_0
pyparsing=2.4.7=pyhd3eb1b0_0
pyqt=5.9.2=py38ha925a31_4
pyrsistent=0.17.3=py38he774522_0
python=3.8.8=hdbf39b2_5
python-dateutil=2.8.1=pyhd3eb1b0_0
pytz=2021.1=pyhd3eb1b0_0
pywin32=227=py38he774522_1
pywinpty=0.5.7=py38_0
pyzmq=20.0.0=py38hd77b12b_1
qt=5.9.7=vc14h73c81de_0
retrying=1.3.3=py_2
scikit-learn=0.24.2=py38hf11a4ad_1
scipy=1.6.2=py38h66253e8_1
seaborn=0.11.1=pyhd3eb1b0_0
send2trash=1.5.0=pyhd3eb1b0_1
setuptools=52.0.0=py38haa95532_0
shap=0.39.0=pypi_0
sip=4.19.13=py38ha925a31_0
six=1.16.0=pyhd3eb1b0_0
slicer=0.0.7=pypi_0
sqlite=3.36.0=h2bbff1b_0
terminado=0.9.4=py38haa95532_0
testpath=0.5.0=pyhd3eb1b0_0
threadpoolctl=2.2.0=pyhb85f177_0
tk=8.6.10=he774522_0
tornado=6.1=py38h2bbff1b_0
tqdm=4.61.2=pypi_0
traitlets=5.0.5=pyhd3eb1b0_0
vc=14.2=h21ff451_1
vs2015_runtime=14.27.29016=h5e58377_2
wcwidth=0.2.5=py_0
webencodings=0.5.1=py38_1
wheel=0.36.2=pyhd3eb1b0_0
widgetsnbextension=3.5.1=py38_0
wincertstore=0.2=py38_0
winpty=0.4.3=4
xgboost=1.4.2=pypi_0
xlrd=2.0.1=pyhd3eb1b0_0
xz=5.2.5=h62dcd97_0
zeromq=4.3.3=ha925a31_3
zipp=3.5.0=pyhd3eb1b0_0
zlib=1.2.11=h62dcd97_4
zstd=1.4.9=h19a0ad4_0
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment