simple_plotter.py 6.09 KB
Newer Older
Mario Hock's avatar
Mario Hock committed
1
2
3
4
#!/usr/bin/env python3
# -*- coding:utf-8 -*-

import sys
5
import matplotlib
Mario Hock's avatar
Mario Hock committed
6

7
from cnl_library import CNLParser, calc_ema, merge_lists, pretty_json
8
9
from plot_cpu import plot_top_cpus

Mario Hock's avatar
Mario Hock committed
10

Mario Hock's avatar
Mario Hock committed
11
12
13
## matplotlib.use('QT4Agg')  # override matplotlibrc
import matplotlib.pyplot as plt

Mario Hock's avatar
Mario Hock committed
14

Mario Hock's avatar
Mario Hock committed
15
16
17
18
19
20
21
22
23
24
25
def append_twice(base_list, extend_list):
    if ( isinstance(extend_list, list) ):
        for x in extend_list:
            base_list.append(x)
            base_list.append(x)
    else:
        base_list.append(extend_list)
        base_list.append(extend_list)



Mario Hock's avatar
Mario Hock committed
26
27


Mario Hock's avatar
Mario Hock committed
28
def parse_cnl_file(filename):
Mario Hock's avatar
Mario Hock committed
29
30
31
    ## * Parse input file. *
    cnl_file = CNLParser(filename)

32
    ## Prepare data for matplotlib
Mario Hock's avatar
Mario Hock committed
33

Mario Hock's avatar
Mario Hock committed
34
    #nics = cnl_file.get_nics()
Mario Hock's avatar
Mario Hock committed
35
    nics = ("eth1", "eth2")  ## XXX
36
37
    net_cols = list()
    nic_fields = [".send", ".receive"]
Mario Hock's avatar
Mario Hock committed
38
    for nic_name in nics:
39
40
        for nic_field in nic_fields:
            net_cols.append( nic_name + nic_field )
Mario Hock's avatar
Mario Hock committed
41

42
    cpu_cols = [ cpu_name + ".util" for cpu_name in cnl_file.get_cpus() ]
43
    #cpu_cols = [ cpu_name + ".irq" for cpu_name in cnl_file.get_cpus() ]   ## XXX
44
45

    cols = cnl_file.get_csv_columns()
Mario Hock's avatar
Mario Hock committed
46
    #x_values = cols["end"]
Mario Hock's avatar
Mario Hock committed
47
    #print( cols )   ## XXX
Mario Hock's avatar
Mario Hock committed
48
49


Mario Hock's avatar
Mario Hock committed
50
51
52
53
    ## Augment cnl_file with processed data.
    cnl_file.cols = cols
    cnl_file.net_col_names = net_cols
    cnl_file.cpu_col_names = cpu_cols
Mario Hock's avatar
Mario Hock committed
54
    #cnl_file.x_values = x_values
Mario Hock's avatar
Mario Hock committed
55

Mario Hock's avatar
Mario Hock committed
56
    return cnl_file
Mario Hock's avatar
Mario Hock committed
57

Mario Hock's avatar
Mario Hock committed
58

Mario Hock's avatar
Mario Hock committed
59
60


61
def plot(ax, x_values, cols, active_cols, alpha, **kwargs):
Mario Hock's avatar
Mario Hock committed
62
63
64
65
66
67
68
69
    #use_ema = kwargs.get("use_ema")

    for col_name in active_cols:
        data = cols[col_name]
        if ( len(x_values) == len(data)*2 ):
            data = merge_lists( data, data )

        # * plot *
70
        ax.plot(x_values , data, label=col_name, alpha=alpha)
Mario Hock's avatar
Mario Hock committed
71
72
73
74
75
76

        ## plot ema
        #if ( use_ema ):
            #ax.plot(x_values , calc_ema(cols[col_name], 0.2), label=col_name+" (ema)")


77
def plot_net(ax, cnl_file, alpha, legend_outside=True):
Mario Hock's avatar
Mario Hock committed
78
79
    ax.set_ylim(0,10**10)
    ax.set_ylabel('Throughput (Bit/s)')
80

81
    plot(ax, cnl_file.x_values, cnl_file.cols, cnl_file.net_col_names, alpha)
82

83
84
85
86
87
88
89
90
91
92
    # Legend
    if ( legend_outside ):
        offset = matplotlib.transforms.ScaledTranslation(0, -20, matplotlib.transforms.IdentityTransform())
        trans = ax.transAxes + offset

        l = ax.legend( loc='upper left', bbox_to_anchor=(0, 0), ncol=int(len(cnl_file.net_col_names)/2),
                      bbox_transform = trans,
                      fancybox=False, shadow=False)
    else:
        l = ax.legend(loc=0)
Mario Hock's avatar
Mario Hock committed
93

94

95
def plot_cpu(ax, cnl_file, alpha, legend_outside=True):
Mario Hock's avatar
Mario Hock committed
96
97
    ax.set_ylim(0,100)
    ax.set_ylabel('CPU util (%)')
Mario Hock's avatar
Mario Hock committed
98

99
    plot(ax, cnl_file.x_values, cnl_file.cols, cnl_file.cpu_col_names, alpha)
Mario Hock's avatar
Mario Hock committed
100

101
102
103
104
105
106
107
108
109
110
111
112
    # Legend
    if ( legend_outside ):
        offset = matplotlib.transforms.ScaledTranslation(0, -20, matplotlib.transforms.IdentityTransform())
        trans = ax.transAxes + offset

        l = ax.legend( loc='upper left', bbox_to_anchor=(0, 0), ncol=int(len(cnl_file.cpu_col_names)/2),
                      bbox_transform = trans,
                      fancybox=False, shadow=False)
    else:
        l = ax.legend(loc=0)

    ax.set_label("Testlabel")
Mario Hock's avatar
Mario Hock committed
113

114
    l.draggable(True)
Mario Hock's avatar
Mario Hock committed
115
116
117
118
119
120



## MAIN ##
if __name__ == "__main__":

Mario Hock's avatar
Mario Hock committed
121
122
123
124
125
126
    ## Command line arguments
    import argparse

    parser = argparse.ArgumentParser()

    parser.add_argument("files", nargs='*')
127
128
129
130
131
132
133
134
    parser.add_argument("-tn", "--transparent-net", action="store_true")
    parser.add_argument("-tc", "--transparent-cpu", action="store_true")
    parser.add_argument("-t", "--transparent", action="store_true",
                        help="Implies --transparent-net and --transparent-cpu")    ## TODO
    parser.add_argument("--opacity", type=float, default=0.7,
                        help="Default: 0.7")
    parser.add_argument("-nc", "--no-comment", action="store_true")                ## TODO
    parser.add_argument("-p", "--publication", action="store_true",                ## TODO
Mario Hock's avatar
Mario Hock committed
135
136
137
138
139
140
                        help="Reduces the margins so that the output is more suitable for publications and presentations. (Implies --no-comment)")

    args = parser.parse_args()


    num_files = len(args.files)
Mario Hock's avatar
Mario Hock committed
141
142
143
144
145

    ## Create figure (window/file)
    fig = plt.figure()
    fig.canvas.set_window_title('CPUnetPlot')

146
147
    num_cols = 2

Mario Hock's avatar
Mario Hock committed
148
149
    old_ax_net = None
    old_ax_cpu = None
Mario Hock's avatar
Mario Hock committed
150
    for i in range(0, num_files):
151
        ## Read file
Mario Hock's avatar
Mario Hock committed
152
        filename = args.files[i]
153
154
        cnl_file = parse_cnl_file(filename)

155
156
157
158
        print( filename )
        print( pretty_json(cnl_file.get_general_header()) )
        print()

159
160
161
162
163
        ## Plot with matplotlib.

        ## Draw comment on the figure (use absolute positioning).
        t = matplotlib.text.Text(10,10, "Comment: " + cnl_file.get_comment(), figure=fig)
        fig.texts.append(t)
Mario Hock's avatar
Mario Hock committed
164

Mario Hock's avatar
Mario Hock committed
165

166
        ## Prepare subplots
167
        fig.subplots_adjust(left=0.1, wspace=0.2, right=0.9, top=0.92, hspace=0.4, bottom=0.12)
Mario Hock's avatar
Mario Hock committed
168
169
        ax_net = fig.add_subplot(2, num_cols, i+1, sharex=old_ax_net, sharey=old_ax_net)
        ax_cpu = fig.add_subplot(2, num_cols, i+num_cols+1, sharex=ax_net, sharey=old_ax_cpu)
Mario Hock's avatar
Mario Hock committed
170
171
172
173
174
175
176
177
178
179
        #ax_net = fig.add_subplot(111)  ## twin axis
        #ax_cpu = ax_net.twinx()        ## twin axis


        ## Prepare x_values
        plateau = True      ## XXX
        if ( plateau ):
            cnl_file.x_values = merge_lists( cnl_file.cols["begin"], cnl_file.cols["end"] )
        else:
            cnl_file.x_values = cnl_file.cols["end"]
180

181
        ## Plot
182
183
        plot_net(ax_net, cnl_file, args.opacity if args.transparent_net else 1.0)
        plot_cpu(ax_cpu, cnl_file, args.opacity if args.transparent_cpu else 1.0)
Mario Hock's avatar
Mario Hock committed
184

Mario Hock's avatar
Mario Hock committed
185
186
187
188
        old_ax_net = ax_net
        old_ax_cpu = ax_cpu


189
190
191
192
193
194
195
196
197
    ## If we have only one input file, plot CPU area charts.
    if ( num_files == 1 ):
        ax1 = fig.add_subplot(2, num_cols, 2, sharex=old_ax_net, sharey=old_ax_cpu)
        ax2 = fig.add_subplot(2, num_cols, 4, sharex=ax_net, sharey=old_ax_cpu)

        plot_top_cpus( cnl_file, (ax1, ax2), (0,1) )



Mario Hock's avatar
Mario Hock committed
198
    ## maximize window
199
    if ( num_files > 1 or True ):  ## XXX always maximize?
Mario Hock's avatar
Mario Hock committed
200
201
202
203
204
205
206
        try:
            figManager = plt.get_current_fig_manager()
            figManager.window.showMaximized()
        except:
            pass

    # show plot
Mario Hock's avatar
Mario Hock committed
207
    plt.show()