simple_plotter.py 7.1 KB
Newer Older
Mario Hock's avatar
Mario Hock committed
1
2
3
4
#!/usr/bin/env python3
# -*- coding:utf-8 -*-

import sys
5
import matplotlib
Mario Hock's avatar
Mario Hock committed
6

7
from cnl_library import CNLParser, calc_ema, merge_lists, pretty_json
8
9
from plot_cpu import plot_top_cpus

Mario Hock's avatar
Mario Hock committed
10

Mario Hock's avatar
Mario Hock committed
11
12
13
## matplotlib.use('QT4Agg')  # override matplotlibrc
import matplotlib.pyplot as plt

Mario Hock's avatar
Mario Hock committed
14

Mario Hock's avatar
Mario Hock committed
15
16
17
18
19
20
21
22
23
24
25
def append_twice(base_list, extend_list):
    if ( isinstance(extend_list, list) ):
        for x in extend_list:
            base_list.append(x)
            base_list.append(x)
    else:
        base_list.append(extend_list)
        base_list.append(extend_list)



Mario Hock's avatar
Mario Hock committed
26
27


Mario Hock's avatar
Mario Hock committed
28
def parse_cnl_file(filename):
Mario Hock's avatar
Mario Hock committed
29
30
31
    ## * Parse input file. *
    cnl_file = CNLParser(filename)

32
    ## Prepare data for matplotlib
Mario Hock's avatar
Mario Hock committed
33

Mario Hock's avatar
Mario Hock committed
34
    #nics = cnl_file.get_nics()
Mario Hock's avatar
Mario Hock committed
35
    nics = ("eth1", "eth2")  ## XXX
36
37
    net_cols = list()
    nic_fields = [".send", ".receive"]
Mario Hock's avatar
Mario Hock committed
38
    for nic_name in nics:
39
40
        for nic_field in nic_fields:
            net_cols.append( nic_name + nic_field )
Mario Hock's avatar
Mario Hock committed
41

42
    cpu_cols = [ cpu_name + ".util" for cpu_name in cnl_file.get_cpus() ]
43
    #cpu_cols = [ cpu_name + ".irq" for cpu_name in cnl_file.get_cpus() ]   ## XXX
44
45

    cols = cnl_file.get_csv_columns()
Mario Hock's avatar
Mario Hock committed
46
    #x_values = cols["end"]
Mario Hock's avatar
Mario Hock committed
47
    #print( cols )   ## XXX
Mario Hock's avatar
Mario Hock committed
48
49


Mario Hock's avatar
Mario Hock committed
50
51
52
53
    ## Augment cnl_file with processed data.
    cnl_file.cols = cols
    cnl_file.net_col_names = net_cols
    cnl_file.cpu_col_names = cpu_cols
Mario Hock's avatar
Mario Hock committed
54
    #cnl_file.x_values = x_values
Mario Hock's avatar
Mario Hock committed
55

Mario Hock's avatar
Mario Hock committed
56
    return cnl_file
Mario Hock's avatar
Mario Hock committed
57

Mario Hock's avatar
Mario Hock committed
58

Mario Hock's avatar
Mario Hock committed
59
60


61
def plot(ax, x_values, cols, active_cols, alpha, **kwargs):
Mario Hock's avatar
Mario Hock committed
62
    #use_ema = kwargs.get("use_ema")
Mario Hock's avatar
Mario Hock committed
63
64
    ema_only = kwargs.get("ema_only")
    smooth = kwargs.get("smooth")
Mario Hock's avatar
Mario Hock committed
65
66
67
68
69
70
71

    for col_name in active_cols:
        data = cols[col_name]
        if ( len(x_values) == len(data)*2 ):
            data = merge_lists( data, data )

        # * plot *
Mario Hock's avatar
Mario Hock committed
72
73
        if ( not ema_only ):
            ax.plot(x_values , data, label=col_name, alpha=alpha)
Mario Hock's avatar
Mario Hock committed
74
75

        ## plot ema
Mario Hock's avatar
Mario Hock committed
76
77
        if ( ema_only and smooth ):
            ax.plot(x_values , calc_ema(data, smooth), label=col_name)
Mario Hock's avatar
Mario Hock committed
78
79


80
def plot_net(ax, cnl_file, alpha, legend_outside=True):
Mario Hock's avatar
Mario Hock committed
81
82
    ax.set_ylim(0,10**10)
    ax.set_ylabel('Throughput (Bit/s)')
83

84
    plot(ax, cnl_file.x_values, cnl_file.cols, cnl_file.net_col_names, alpha)
85

86
87
88
89
90
91
92
93
94
95
    # Legend
    if ( legend_outside ):
        offset = matplotlib.transforms.ScaledTranslation(0, -20, matplotlib.transforms.IdentityTransform())
        trans = ax.transAxes + offset

        l = ax.legend( loc='upper left', bbox_to_anchor=(0, 0), ncol=int(len(cnl_file.net_col_names)/2),
                      bbox_transform = trans,
                      fancybox=False, shadow=False)
    else:
        l = ax.legend(loc=0)
Mario Hock's avatar
Mario Hock committed
96

97

Mario Hock's avatar
Mario Hock committed
98
99
100
101
102
103
104
def plot_cpu(ax, cnl_file, args):
    # parameters
    legend_outside = True
    alpha = args.opacity if args.transparent_cpu else 1.0
    smooth = args.smooth_cpu

    # axes
Mario Hock's avatar
Mario Hock committed
105
106
    ax.set_ylim(0,100)
    ax.set_ylabel('CPU util (%)')
Mario Hock's avatar
Mario Hock committed
107

Mario Hock's avatar
Mario Hock committed
108
109
110
    # * plot *
    plot(ax, cnl_file.x_values, cnl_file.cols, cnl_file.cpu_col_names, alpha,
         ema_only=True if smooth else False, smooth=smooth)
Mario Hock's avatar
Mario Hock committed
111

112
113
114
115
116
117
118
119
120
121
122
    # Legend
    if ( legend_outside ):
        offset = matplotlib.transforms.ScaledTranslation(0, -20, matplotlib.transforms.IdentityTransform())
        trans = ax.transAxes + offset

        l = ax.legend( loc='upper left', bbox_to_anchor=(0, 0), ncol=int(len(cnl_file.cpu_col_names)/2),
                      bbox_transform = trans,
                      fancybox=False, shadow=False)
    else:
        l = ax.legend(loc=0)

Mario Hock's avatar
Mario Hock committed
123
    #ax.set_label("Testlabel")
Mario Hock's avatar
Mario Hock committed
124

125
    l.draggable(True)
Mario Hock's avatar
Mario Hock committed
126
127
128
129
130
131



## MAIN ##
if __name__ == "__main__":

Mario Hock's avatar
Mario Hock committed
132
133
134
    ## Command line arguments
    import argparse

Mario Hock's avatar
Mario Hock committed
135
136
137
138

    DEFAULT_OPACITY = 0.7
    DEFAULT_ALPHA = 0.1             # alpha for ema, the smaller the smoother

Mario Hock's avatar
Mario Hock committed
139
140
141
    parser = argparse.ArgumentParser()

    parser.add_argument("files", nargs='*')
142
143
144
    parser.add_argument("-tn", "--transparent-net", action="store_true")
    parser.add_argument("-tc", "--transparent-cpu", action="store_true")
    parser.add_argument("-t", "--transparent", action="store_true",
Mario Hock's avatar
Mario Hock committed
145
146
                        help="Implies --transparent-net and --transparent-cpu")
    parser.add_argument("--opacity", type=float, default=DEFAULT_OPACITY,
147
148
149
                        help="Default: 0.7")
    parser.add_argument("-nc", "--no-comment", action="store_true")                ## TODO
    parser.add_argument("-p", "--publication", action="store_true",                ## TODO
Mario Hock's avatar
Mario Hock committed
150
151
                        help="Reduces the margins so that the output is more suitable for publications and presentations. (Implies --no-comment)")

Mario Hock's avatar
Mario Hock committed
152
153
154
155
    parser.add_argument("-sc", "--smooth-cpu", nargs='?', const=DEFAULT_ALPHA, type=float,
                        metavar="ALPHA",
                        help = "Smooth CPU values with exponential moving average. (Disabled by default. When specified without parameter: ALPHA=0.1)" )

Mario Hock's avatar
Mario Hock committed
156
157
158
159
160
    ## TODO implement (maybe set as default)
    parser.add_argument("-a", "--all-matches", action="store_true",
                        help="Finds all matches current directory (or in --files, if specified) and plots them pairwise.")


Mario Hock's avatar
Mario Hock committed
161
162
163
    args = parser.parse_args()


Mario Hock's avatar
Mario Hock committed
164
165
166
167
168
169
170
    ## set implicated options
    # --transparent
    if ( args.transparent ):
        args.transparent_cpu = True
        args.transparent_net = True


Mario Hock's avatar
Mario Hock committed
171
    num_files = len(args.files)
Mario Hock's avatar
Mario Hock committed
172
173
174
175
176

    ## Create figure (window/file)
    fig = plt.figure()
    fig.canvas.set_window_title('CPUnetPlot')

177
178
    num_cols = 2

Mario Hock's avatar
Mario Hock committed
179
180
    old_ax_net = None
    old_ax_cpu = None
Mario Hock's avatar
Mario Hock committed
181
    for i in range(0, num_files):
182
        ## Read file
Mario Hock's avatar
Mario Hock committed
183
        filename = args.files[i]
184
185
        cnl_file = parse_cnl_file(filename)

186
187
188
189
        print( filename )
        print( pretty_json(cnl_file.get_general_header()) )
        print()

190
191
192
193
194
        ## Plot with matplotlib.

        ## Draw comment on the figure (use absolute positioning).
        t = matplotlib.text.Text(10,10, "Comment: " + cnl_file.get_comment(), figure=fig)
        fig.texts.append(t)
Mario Hock's avatar
Mario Hock committed
195

Mario Hock's avatar
Mario Hock committed
196

197
        ## Prepare subplots
198
        fig.subplots_adjust(left=0.1, wspace=0.2, right=0.9, top=0.92, hspace=0.4, bottom=0.12)
Mario Hock's avatar
Mario Hock committed
199
200
        ax_net = fig.add_subplot(2, num_cols, i+1, sharex=old_ax_net, sharey=old_ax_net)
        ax_cpu = fig.add_subplot(2, num_cols, i+num_cols+1, sharex=ax_net, sharey=old_ax_cpu)
Mario Hock's avatar
Mario Hock committed
201
202
203
204
205
206
207
208
209
210
        #ax_net = fig.add_subplot(111)  ## twin axis
        #ax_cpu = ax_net.twinx()        ## twin axis


        ## Prepare x_values
        plateau = True      ## XXX
        if ( plateau ):
            cnl_file.x_values = merge_lists( cnl_file.cols["begin"], cnl_file.cols["end"] )
        else:
            cnl_file.x_values = cnl_file.cols["end"]
211

212
        ## Plot
213
        plot_net(ax_net, cnl_file, args.opacity if args.transparent_net else 1.0)
Mario Hock's avatar
Mario Hock committed
214
        plot_cpu(ax_cpu, cnl_file, args)
Mario Hock's avatar
Mario Hock committed
215

Mario Hock's avatar
Mario Hock committed
216
217
218
219
        old_ax_net = ax_net
        old_ax_cpu = ax_cpu


220
221
222
223
224
225
226
227
228
    ## If we have only one input file, plot CPU area charts.
    if ( num_files == 1 ):
        ax1 = fig.add_subplot(2, num_cols, 2, sharex=old_ax_net, sharey=old_ax_cpu)
        ax2 = fig.add_subplot(2, num_cols, 4, sharex=ax_net, sharey=old_ax_cpu)

        plot_top_cpus( cnl_file, (ax1, ax2), (0,1) )



Mario Hock's avatar
Mario Hock committed
229
    ## maximize window
230
    if ( num_files > 1 or True ):  ## XXX always maximize?
Mario Hock's avatar
Mario Hock committed
231
232
233
234
235
236
237
        try:
            figManager = plt.get_current_fig_manager()
            figManager.window.showMaximized()
        except:
            pass

    # show plot
Mario Hock's avatar
Mario Hock committed
238
    plt.show()