hungarian.c 10.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/********************************************************************
 ********************************************************************
 **
 ** libhungarian by Cyrill Stachniss, 2004
 **
 ** Added and adapted to libFirm by Christian Wuerdig, 2006
 **
 ** Solving the Minimum Assignment Problem using the
 ** Hungarian Method.
 **
 ** ** This file may be freely copied and distributed! **
 **
 ** Parts of the used code was originally provided by the
 ** "Stanford GraphGase", but I made changes to this code.
 ** As asked by  the copyright node of the "Stanford GraphGase",
 ** I hereby proclaim that this file are *NOT* part of the
 ** "Stanford GraphGase" distrubition!
 **
 ** This file is distributed in the hope that it will be useful,
 ** but WITHOUT ANY WARRANTY; without even the implied
 ** warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 ** PURPOSE.
 **
 ********************************************************************
 ********************************************************************/

/* $Id$ */

29
30
31
32
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif

33
34
35
36
37
38
39
40
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#include "irtools.h"
#include "xmalloc.h"
#include "debug.h"
#include "obst.h"
41
#include "bitset.h"
42
43
44
45
46
47

#include "hungarian.h"

#define INF (0x7FFFFFFF)

struct _hungarian_problem_t {
48
49
50
51
52
53
54
55
	int      num_rows;          /**< number of rows */
	int      num_cols;          /**< number of columns */
	int      **cost;            /**< the cost matrix */
	int      width;             /**< the width for cost matrix dumper */
	int      max_cost;          /**< the maximal costs in the matrix */
	int      match_type;        /**< PERFECT or NORMAL matching */
	bitset_t *missing_left;     /**< left side nodes having no edge to the right side */
	bitset_t *missing_right;    /**< right side nodes having no edge to the left side */
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
	struct obstack obst;
	DEBUG_ONLY(firm_dbg_module_t *dbg);
};

static INLINE void *get_init_mem(struct obstack *obst, long sz) {
	void *p = obstack_alloc(obst, sz);
	memset(p, 0, sz);
	return p;
}

static void hungarian_dump_f(FILE *f, int **C, int rows, int cols, int width) {
	int i, j;

	fprintf(f , "\n");
	for (i = 0; i < rows; i++) {
		fprintf(f, " [");
		for (j = 0; j < cols; j++) {
			fprintf(f, "%*d", width, C[i][j]);
		}
		fprintf(f, "]\n");
	}
	fprintf(f, "\n");
}

void hungarian_print_costmatrix(hungarian_problem_t *p) {
	hungarian_dump_f(stderr, p->cost, p->num_rows, p->num_cols, p->width);
}

/**
 * Create the object and allocate memory for the data structures.
 */
87
hungarian_problem_t *hungarian_new(int rows, int cols, int width, int match_type) {
88
89
90
	int i;
	hungarian_problem_t *p = xmalloc(sizeof(*p));

91
	memset(p, 0, sizeof(p[0]));
92
93
94
95
96
97
98
99
100
101
102
103

	FIRM_DBG_REGISTER(p->dbg, "firm.hungarian");

	/*
		Is the number of cols  not equal to number of rows ?
		If yes, expand with 0 - cols / 0 - cols
	*/
	rows = MAX(cols, rows);
	cols = rows;

	obstack_init(&p->obst);

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
	p->num_rows   = rows;
	p->num_cols   = cols;
	p->width      = width;
	p->match_type = match_type;

	/*
		In case of normal matching, we have to keep
		track of nodes without edges to kill them in
		the assignment later.
	*/
	if (match_type == HUNGARIAN_MATCH_NORMAL) {
		p->missing_left  = bitset_obstack_alloc(&p->obst, rows);
		p->missing_right = bitset_obstack_alloc(&p->obst, cols);
		bitset_set_all(p->missing_left);
		bitset_set_all(p->missing_right);
	}
120
121

	/* allocate space for cost matrix */
122
	p->cost = (int **)get_init_mem(&p->obst, rows * sizeof(p->cost[0]));
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
	for (i = 0; i < p->num_rows; i++)
		p->cost[i] = (int *)get_init_mem(&p->obst, cols * sizeof(p->cost[0][0]));

	return p;
}

/**
 * Prepare the cost matrix.
 */
void hungarian_prepare_cost_matrix(hungarian_problem_t *p, int mode) {
	int i, j;

	if (mode == HUNGARIAN_MODE_MAXIMIZE_UTIL) {
		for (i = 0; i < p->num_rows; i++) {
			for (j = 0; j < p->num_cols; j++) {
				p->cost[i][j] = p->max_cost - p->cost[i][j];
			}
		}
	}
	else if (mode == HUNGARIAN_MODE_MINIMIZE_COST) {
		/* nothing to do */
	}
	else
		fprintf(stderr, "Unknown mode. Mode was set to HUNGARIAN_MODE_MINIMIZE_COST.\n");
}

/**
 * Set cost[left][right] to cost.
 */
void hungarian_add(hungarian_problem_t *p, int left, int right, int cost) {
	assert(p->num_rows > left  && "Invalid row selected.");
	assert(p->num_cols > right && "Invalid column selected.");
155
	assert(cost >= 0);
156
157
158

	p->cost[left][right] = cost;
	p->max_cost          = MAX(p->max_cost, cost);
159
160
161
162
163

	if (p->match_type == HUNGARIAN_MATCH_NORMAL) {
		bitset_clear(p->missing_left, left);
		bitset_clear(p->missing_right, right);
	}
164
165
166
167
168
169
170
171
172
173
}

/**
 * Set cost[left][right] to 0.
 */
void hungarian_remv(hungarian_problem_t *p, int left, int right) {
	assert(p->num_rows > left  && "Invalid row selected.");
	assert(p->num_cols > right && "Invalid column selected.");

	p->cost[left][right] = 0;
174
175
176
177
178

	if (p->match_type == HUNGARIAN_MATCH_NORMAL) {
		bitset_set(p->missing_left, left);
		bitset_set(p->missing_right, right);
	}
179
180
181
182
183
184
185
186
187
188
189
190
191
}

/**
 * Frees all allocated memory.
 */
void hungarian_free(hungarian_problem_t* p) {
	obstack_free(&p->obst, NULL);
	xfree(p);
}

/**
 * Do the assignment.
 */
Christian Würdig's avatar
Christian Würdig committed
192
int hungarian_solve(hungarian_problem_t* p, int *assignment, int *final_cost, int cost_threshold) {
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
	int i, j, m, n, k, l, s, t, q, unmatched, cost;
	int *col_mate;
	int *row_mate;
	int *parent_row;
	int *unchosen_row;
	int *row_dec;
	int *col_inc;
	int *slack;
	int *slack_row;

	cost = 0;
	m    = p->num_rows;
	n    = p->num_cols;

	col_mate     = xcalloc(p->num_rows, sizeof(col_mate[0]));
	unchosen_row = xcalloc(p->num_rows, sizeof(unchosen_row[0]));
	row_dec      = xcalloc(p->num_rows, sizeof(row_dec[0]));
	slack_row    = xcalloc(p->num_rows, sizeof(slack_row[0]));

	row_mate     = xcalloc(p->num_cols, sizeof(row_mate[0]));
	parent_row   = xcalloc(p->num_cols, sizeof(parent_row[0]));
	col_inc      = xcalloc(p->num_cols, sizeof(col_inc[0]));
	slack        = xcalloc(p->num_cols, sizeof(slack[0]));

	memset(assignment, -1, m * sizeof(assignment[0]));

	/* Begin subtract column minima in order to start with lots of zeros 12 */
	DBG((p->dbg, LEVEL_1, "Using heuristic\n"));

	for (l = 0; l < n; ++l) {
		s = p->cost[0][l];

		for (k = 1; k < m; ++k) {
			if (p->cost[k][l] < s)
				s = p->cost[k][l];
		}

		cost += s;

		if (s != 0) {
			for (k = 0; k < m; ++k)
				p->cost[k][l] -= s;
		}
	}
	/* End subtract column minima in order to start with lots of zeros 12 */

	/* Begin initial state 16 */
	t = 0;
	for (l = 0; l < n; ++l) {
		row_mate[l]   = -1;
		parent_row[l] = -1;
		col_inc[l]    = 0;
		slack[l]      = INF;
	}

	for (k = 0; k < m; ++k) {
		s = p->cost[k][0];

		for (l = 1; l < n; ++l) {
			if (p->cost[k][l] < s)
				s = p->cost[k][l];
		}

		row_dec[k] = s;

		for (l = 0; l < n; ++l) {
			if (s == p->cost[k][l] && row_mate[l] < 0) {
				col_mate[k] = l;
				row_mate[l] = k;
				DBG((p->dbg, LEVEL_1, "matching col %d == row %d\n", l, k));
				goto row_done;
			}
		}

		col_mate[k] = -1;
		DBG((p->dbg, LEVEL_1, "node %d: unmatched row %d\n", t, k));
		unchosen_row[t++] = k;
row_done: ;
	}
	/* End initial state 16 */

	/* Begin Hungarian algorithm 18 */
	if (t == 0)
		goto done;

	unmatched = t;
	while (1) {
		DBG((p->dbg, LEVEL_1, "Matched %d rows.\n", m - t));
		q = 0;

		while (1) {
			while (q < t) {
				/* Begin explore node q of the forest 19 */
				k = unchosen_row[q];
				s = row_dec[k];

				for (l = 0; l < n; ++l) {
					if (slack[l]) {
						int del = p->cost[k][l] - s + col_inc[l];

						if (del < slack[l]) {
							if (del == 0) {
								if (row_mate[l] < 0)
									goto breakthru;

								slack[l]      = 0;
								parent_row[l] = k;
								DBG((p->dbg, LEVEL_1, "node %d: row %d == col %d -- row %d\n", t, row_mate[l], l, k));
								unchosen_row[t++] = row_mate[l];
							}
							else {
								slack[l]     = del;
								slack_row[l] = k;
							}
						}
					}
				}
				/* End explore node q of the forest 19 */
				q++;
			}

			/* Begin introduce a new zero into the matrix 21 */
			s = INF;
			for (l = 0; l < n; ++l) {
				if (slack[l] && slack[l] < s)
					s = slack[l];
			}

			for (q = 0; q < t; ++q)
				row_dec[unchosen_row[q]] += s;

			for (l = 0; l < n; ++l) {
				if (slack[l]) {
					slack[l] -= s;
					if (slack[l] == 0) {
						/* Begin look at a new zero 22 */
						k = slack_row[l];
						DBG((p->dbg, LEVEL_1, "Decreasing uncovered elements by %d produces zero at [%d, %d]\n", s, k, l));
						if (row_mate[l] < 0) {
							for (j = l + 1; j < n; ++j) {
								if (slack[j] == 0)
									col_inc[j] += s;
							}
							goto breakthru;
						}
						else {
							parent_row[l] = k;
							DBG((p->dbg, LEVEL_1, "node %d: row %d == col %d -- row %d\n", t, row_mate[l], l, k));
							unchosen_row[t++] = row_mate[l];
						}
						/* End look at a new zero 22 */
					}
				}
				else {
					col_inc[l] += s;
				}
			}
			/* End introduce a new zero into the matrix 21 */
		}
breakthru:
		/* Begin update the matching 20 */
		DBG((p->dbg, LEVEL_1, "Breakthrough at node %d of %d.\n", q, t));
		while (1) {
			j           = col_mate[k];
			col_mate[k] = l;
			row_mate[l] = k;

			DBG((p->dbg, LEVEL_1, "rematching col %d == row %d\n", l, k));
			if (j < 0)
				break;

			k = parent_row[j];
			l = j;
		}
		/* End update the matching 20 */

		if (--unmatched == 0)
			goto done;

		/* Begin get ready for another stage 17 */
		t = 0;
		for (l = 0; l < n; ++l) {
			parent_row[l] = -1;
			slack[l]      = INF;
		}

		for (k = 0; k < m; ++k) {
			if (col_mate[k] < 0) {
				DBG((p->dbg, LEVEL_1, "node %d: unmatched row %d\n", t, k));
				unchosen_row[t++] = k;
			}
		}
		/* End get ready for another stage 17 */
	}
done:

	/* Begin double check the solution 23 */
	for (k = 0; k < m; ++k) {
		for (l = 0; l < n; ++l) {
			if (p->cost[k][l] < row_dec[k] - col_inc[l])
				return -1;
		}
	}

	for (k = 0; k < m; ++k) {
		l = col_mate[k];
		if (l < 0 || p->cost[k][l] != row_dec[k] - col_inc[l])
			return -2;
	}

	for (k = l = 0; l < n; ++l) {
		if (col_inc[l])
			k++;
	}

	if (k > m)
		return -3;
	/* End double check the solution 23 */

	/* End Hungarian algorithm 18 */

	/* collect the assigned values */
	for (i = 0; i < m; ++i) {
Christian Würdig's avatar
Christian Würdig committed
416
417
418
419
		if (cost_threshold > 0 && p->cost[i][col_mate[i]] >= cost_threshold)
			assignment[i] = -1; /* remove matching having cost > threshold */
		else
			assignment[i] = col_mate[i];
420
421
	}

422
423
424
425
426
427
428
429
	/* In case of normal matching: remove impossible ones */
	if (p->match_type == HUNGARIAN_MATCH_NORMAL) {
		for (i = 0; i < m; ++i) {
			if (bitset_is_set(p->missing_left, i) || bitset_is_set(p->missing_right, col_mate[i]))
				assignment[i] = -1;
		}
	}

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
	for (k = 0; k < m; ++k) {
		for (l = 0; l < n; ++l) {
			p->cost[k][l] = p->cost[k][l] - row_dec[k] + col_inc[l];
		}
	}

	for (i = 0; i < m; ++i)
		cost += row_dec[i];

	for (i = 0; i < n; ++i)
		cost -= col_inc[i];

	DBG((p->dbg, LEVEL_1, "Cost is %d\n", cost));

	xfree(slack);
	xfree(col_inc);
	xfree(parent_row);
	xfree(row_mate);
	xfree(slack_row);
	xfree(row_dec);
	xfree(unchosen_row);
	xfree(col_mate);

453
454
455
	*final_cost = cost;

	return 0;
456
}