/* * Copyright (C) 1995-2008 University of Karlsruhe. All right reserved. * * This file is part of libFirm. * * This file may be distributed and/or modified under the terms of the * GNU General Public License version 2 as published by the Free Software * Foundation and appearing in the file LICENSE.GPL included in the * packaging of this file. * * Licensees holding valid libFirm Professional Edition licenses may use * this file in accordance with the libFirm Commercial License. * Agreement provided with the Software. * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE. */ /** * @file * @brief Representation of an intermediate operation. * @author Martin Trapp, Christian Schaefer, Goetz Lindenmaier, Michael Beck * @version $Id$ */ #include "config.h" #include #include "pset_new.h" #include "ident.h" #include "irnode_t.h" #include "irgraph_t.h" #include "irmode_t.h" #include "irbackedge_t.h" #include "irdump.h" #include "irop_t.h" #include "irprog_t.h" #include "iredgekinds.h" #include "iredges_t.h" #include "ircons.h" #include "error.h" #include "irhooks.h" #include "irtools.h" #include "util.h" #include "beinfo.h" /* some constants fixing the positions of nodes predecessors in the in array */ #define CALL_PARAM_OFFSET 2 #define BUILDIN_PARAM_OFFSET 1 #define SEL_INDEX_OFFSET 2 #define RETURN_RESULT_OFFSET 1 /* mem is not a result */ #define END_KEEPALIVE_OFFSET 0 static const char *relation_names [] = { "false", "equal", "less", "less_equal", "greater", "greater_equal", "less_greater", "less_equal_greater", "unordered", "unordered_equal", "unordered_less", "unordered_less_equal", "unordered_greater", "unordered_greater_equal", "not_equal", "true" }; const char *get_relation_string(ir_relation relation) { assert(relation < (ir_relation)ARRAY_SIZE(relation_names)); return relation_names[relation]; } ir_relation get_negated_relation(ir_relation relation) { return relation ^ ir_relation_true; } ir_relation get_inversed_relation(ir_relation relation) { ir_relation code = relation & ~(ir_relation_less|ir_relation_greater); bool less = relation & ir_relation_less; bool greater = relation & ir_relation_greater; code |= (less ? ir_relation_greater : 0) | (greater ? ir_relation_less : 0); return code; } /** * Indicates, whether additional data can be registered to ir nodes. * If set to 1, this is not possible anymore. */ static int forbid_new_data = 0; /** * The amount of additional space for custom data to be allocated upon * creating a new node. */ unsigned firm_add_node_size = 0; /* register new space for every node */ unsigned firm_register_additional_node_data(unsigned size) { assert(!forbid_new_data && "Too late to register additional node data"); if (forbid_new_data) return 0; return firm_add_node_size += size; } void init_irnode(void) { /* Forbid the addition of new data to an ir node. */ forbid_new_data = 1; } struct struct_align { char c; struct s { int i; float f; double d; } s; }; /* * irnode constructor. * Create a new irnode in irg, with an op, mode, arity and * some incoming irnodes. * If arity is negative, a node with a dynamic array is created. */ ir_node *new_ir_node(dbg_info *db, ir_graph *irg, ir_node *block, ir_op *op, ir_mode *mode, int arity, ir_node *const *in) { ir_node *res; unsigned align = offsetof(struct struct_align, s) - 1; unsigned add_node_size = (firm_add_node_size + align) & ~align; size_t node_size = offsetof(ir_node, attr) + op->attr_size + add_node_size; char *p; int i; assert(irg); assert(op); assert(mode); p = (char*)obstack_alloc(irg->obst, node_size); memset(p, 0, node_size); res = (ir_node *)(p + add_node_size); res->kind = k_ir_node; res->op = op; res->mode = mode; res->visited = 0; res->node_idx = irg_register_node_idx(irg, res); res->link = NULL; res->deps = NULL; if (arity < 0) { res->in = NEW_ARR_F(ir_node *, 1); /* 1: space for block */ } else { /* not nice but necessary: End and Sync must always have a flexible array */ if (op == op_End || op == op_Sync) res->in = NEW_ARR_F(ir_node *, (arity+1)); else res->in = NEW_ARR_D(ir_node *, irg->obst, (arity+1)); memcpy(&res->in[1], in, sizeof(ir_node *) * arity); } res->in[0] = block; set_irn_dbg_info(res, db); res->out = NULL; res->node_nr = get_irp_new_node_nr(); for (i = 0; i < EDGE_KIND_LAST; ++i) { INIT_LIST_HEAD(&res->edge_info[i].outs_head); /* edges will be build immediately */ res->edge_info[i].edges_built = 1; res->edge_info[i].out_count = 0; } /* don't put this into the for loop, arity is -1 for some nodes! */ edges_notify_edge(res, -1, res->in[0], NULL, irg); for (i = 1; i <= arity; ++i) edges_notify_edge(res, i - 1, res->in[i], NULL, irg); hook_new_node(irg, res); if (get_irg_phase_state(irg) == phase_backend) { be_info_new_node(res); } return res; } /*-- getting some parameters from ir_nodes --*/ int (is_ir_node)(const void *thing) { return _is_ir_node(thing); } int (get_irn_arity)(const ir_node *node) { return _get_irn_arity(node); } /* Returns the array with ins. This array is shifted with respect to the array accessed by get_irn_n: The block operand is at position 0 not -1. (@@@ This should be changed.) The order of the predecessors in this array is not guaranteed, except that lists of operands as predecessors of Block or arguments of a Call are consecutive. */ ir_node **get_irn_in(const ir_node *node) { return node->in; } void set_irn_in(ir_node *node, int arity, ir_node **in) { int i; ir_node *** pOld_in; ir_graph *irg = get_irn_irg(node); pOld_in = &node->in; for (i = 0; i < arity; i++) { if (i < (int)ARR_LEN(*pOld_in)-1) edges_notify_edge(node, i, in[i], (*pOld_in)[i+1], irg); else edges_notify_edge(node, i, in[i], NULL, irg); } for (;i < (int)ARR_LEN(*pOld_in)-1; i++) { edges_notify_edge(node, i, NULL, (*pOld_in)[i+1], irg); } if (arity != (int)ARR_LEN(*pOld_in) - 1) { ir_node * block = (*pOld_in)[0]; *pOld_in = NEW_ARR_D(ir_node *, irg->obst, arity + 1); (*pOld_in)[0] = block; } fix_backedges(irg->obst, node); memcpy((*pOld_in) + 1, in, sizeof(ir_node *) * arity); } ir_node *(get_irn_n)(const ir_node *node, int n) { return _get_irn_n(node, n); } void set_irn_n(ir_node *node, int n, ir_node *in) { ir_graph *irg = get_irn_irg(node); assert(node && node->kind == k_ir_node); assert(-1 <= n); assert(n < get_irn_arity(node)); assert(in && in->kind == k_ir_node); /* Call the hook */ hook_set_irn_n(node, n, in, node->in[n + 1]); /* Here, we rely on src and tgt being in the current ir graph */ edges_notify_edge(node, n, in, node->in[n + 1], irg); node->in[n + 1] = in; } int add_irn_n(ir_node *node, ir_node *in) { int pos; ir_graph *irg = get_irn_irg(node); assert(node->op->opar == oparity_dynamic); pos = ARR_LEN(node->in) - 1; ARR_APP1(ir_node *, node->in, in); edges_notify_edge(node, pos, node->in[pos + 1], NULL, irg); /* Call the hook */ hook_set_irn_n(node, pos, node->in[pos + 1], NULL); return pos; } void del_Sync_n(ir_node *n, int i) { int arity = get_Sync_n_preds(n); ir_node *last_pred = get_Sync_pred(n, arity - 1); set_Sync_pred(n, i, last_pred); edges_notify_edge(n, arity - 1, NULL, last_pred, get_irn_irg(n)); ARR_SHRINKLEN(get_irn_in(n), arity); } int (get_irn_deps)(const ir_node *node) { return _get_irn_deps(node); } ir_node *(get_irn_dep)(const ir_node *node, int pos) { return _get_irn_dep(node, pos); } void (set_irn_dep)(ir_node *node, int pos, ir_node *dep) { _set_irn_dep(node, pos, dep); } int add_irn_dep(ir_node *node, ir_node *dep) { int res = 0; /* DEP edges are only allowed in backend phase */ assert(get_irg_phase_state(get_irn_irg(node)) == phase_backend); if (node->deps == NULL) { node->deps = NEW_ARR_F(ir_node *, 1); node->deps[0] = dep; } else { int i, n; int first_zero = -1; for (i = 0, n = ARR_LEN(node->deps); i < n; ++i) { if (node->deps[i] == NULL) first_zero = i; if (node->deps[i] == dep) return i; } if (first_zero >= 0) { node->deps[first_zero] = dep; res = first_zero; } else { ARR_APP1(ir_node *, node->deps, dep); res = n; } } edges_notify_edge_kind(node, res, dep, NULL, EDGE_KIND_DEP, get_irn_irg(node)); return res; } void add_irn_deps(ir_node *tgt, ir_node *src) { int i, n; for (i = 0, n = get_irn_deps(src); i < n; ++i) add_irn_dep(tgt, get_irn_dep(src, i)); } ir_mode *(get_irn_mode)(const ir_node *node) { return _get_irn_mode(node); } void (set_irn_mode)(ir_node *node, ir_mode *mode) { _set_irn_mode(node, mode); } ir_op *(get_irn_op)(const ir_node *node) { return _get_irn_op(node); } /* should be private to the library: */ void (set_irn_op)(ir_node *node, ir_op *op) { _set_irn_op(node, op); } unsigned (get_irn_opcode)(const ir_node *node) { return _get_irn_opcode(node); } const char *get_irn_opname(const ir_node *node) { assert(node); if (is_Phi0(node)) return "Phi0"; return get_id_str(node->op->name); } ident *get_irn_opident(const ir_node *node) { assert(node); return node->op->name; } ir_visited_t (get_irn_visited)(const ir_node *node) { return _get_irn_visited(node); } void (set_irn_visited)(ir_node *node, ir_visited_t visited) { _set_irn_visited(node, visited); } void (mark_irn_visited)(ir_node *node) { _mark_irn_visited(node); } int (irn_visited)(const ir_node *node) { return _irn_visited(node); } int (irn_visited_else_mark)(ir_node *node) { return _irn_visited_else_mark(node); } void (set_irn_link)(ir_node *node, void *link) { _set_irn_link(node, link); } void *(get_irn_link)(const ir_node *node) { return _get_irn_link(node); } op_pin_state (get_irn_pinned)(const ir_node *node) { return _get_irn_pinned(node); } op_pin_state (is_irn_pinned_in_irg) (const ir_node *node) { return _is_irn_pinned_in_irg(node); } void set_irn_pinned(ir_node *node, op_pin_state state) { /* due to optimization an opt may be turned into a Tuple */ if (is_Tuple(node)) return; assert(node && get_op_pinned(get_irn_op(node)) >= op_pin_state_exc_pinned); assert(state == op_pin_state_pinned || state == op_pin_state_floats); node->attr.except.pin_state = state; } /* Outputs a unique number for this node */ long get_irn_node_nr(const ir_node *node) { assert(node); return node->node_nr; } void *(get_irn_generic_attr)(ir_node *node) { assert(is_ir_node(node)); return _get_irn_generic_attr(node); } const void *(get_irn_generic_attr_const)(const ir_node *node) { assert(is_ir_node(node)); return _get_irn_generic_attr_const(node); } unsigned (get_irn_idx)(const ir_node *node) { assert(is_ir_node(node)); return _get_irn_idx(node); } int get_irn_pred_pos(ir_node *node, ir_node *arg) { int i; for (i = get_irn_arity(node) - 1; i >= 0; i--) { if (get_irn_n(node, i) == arg) return i; } return -1; } /** manipulate fields of individual nodes **/ ir_node *(get_nodes_block)(const ir_node *node) { return _get_nodes_block(node); } void set_nodes_block(ir_node *node, ir_node *block) { assert(node->op != op_Block); set_irn_n(node, -1, block); } /* Test whether arbitrary node is frame pointer, i.e. Proj(pn_Start_P_frame_base) * from Start. If so returns frame type, else Null. */ ir_type *is_frame_pointer(const ir_node *n) { if (is_Proj(n) && (get_Proj_proj(n) == pn_Start_P_frame_base)) { ir_node *start = get_Proj_pred(n); if (is_Start(start)) { return get_irg_frame_type(get_irn_irg(start)); } } return NULL; } /* Test whether arbitrary node is tls pointer, i.e. Proj(pn_Start_P_tls) * from Start. If so returns tls type, else Null. */ ir_type *is_tls_pointer(const ir_node *n) { if (is_Proj(n) && (get_Proj_proj(n) == pn_Start_P_tls)) { ir_node *start = get_Proj_pred(n); if (is_Start(start)) { return get_tls_type(); } } return NULL; } ir_node **get_Block_cfgpred_arr(ir_node *node) { assert(is_Block(node)); return (ir_node **)&(get_irn_in(node)[1]); } int (get_Block_n_cfgpreds)(const ir_node *node) { return _get_Block_n_cfgpreds(node); } ir_node *(get_Block_cfgpred)(const ir_node *node, int pos) { return _get_Block_cfgpred(node, pos); } void set_Block_cfgpred(ir_node *node, int pos, ir_node *pred) { assert(is_Block(node)); set_irn_n(node, pos, pred); } int get_Block_cfgpred_pos(const ir_node *block, const ir_node *pred) { int i; for (i = get_Block_n_cfgpreds(block) - 1; i >= 0; --i) { if (get_Block_cfgpred_block(block, i) == pred) return i; } return -1; } ir_node *(get_Block_cfgpred_block)(const ir_node *node, int pos) { return _get_Block_cfgpred_block(node, pos); } int get_Block_matured(const ir_node *node) { assert(is_Block(node)); return (int)node->attr.block.is_matured; } void set_Block_matured(ir_node *node, int matured) { assert(is_Block(node)); node->attr.block.is_matured = matured; } ir_visited_t (get_Block_block_visited)(const ir_node *node) { return _get_Block_block_visited(node); } void (set_Block_block_visited)(ir_node *node, ir_visited_t visit) { _set_Block_block_visited(node, visit); } void (mark_Block_block_visited)(ir_node *node) { _mark_Block_block_visited(node); } int (Block_block_visited)(const ir_node *node) { return _Block_block_visited(node); } ir_node *(set_Block_dead)(ir_node *block) { return _set_Block_dead(block); } int (is_Block_dead)(const ir_node *block) { return _is_Block_dead(block); } ir_extblk *get_Block_extbb(const ir_node *block) { ir_extblk *res; assert(is_Block(block)); res = block->attr.block.extblk; assert(res == NULL || is_ir_extbb(res)); return res; } void set_Block_extbb(ir_node *block, ir_extblk *extblk) { assert(is_Block(block)); assert(extblk == NULL || is_ir_extbb(extblk)); block->attr.block.extblk = extblk; } /* returns the graph of a Block. */ ir_graph *(get_Block_irg)(const ir_node *block) { return _get_Block_irg(block); } ir_entity *create_Block_entity(ir_node *block) { ir_entity *entity; assert(is_Block(block)); entity = block->attr.block.entity; if (entity == NULL) { ir_label_t nr; ir_type *glob; glob = get_glob_type(); entity = new_entity(glob, id_unique("block_%u"), get_code_type()); set_entity_visibility(entity, ir_visibility_local); set_entity_linkage(entity, IR_LINKAGE_CONSTANT); nr = get_irp_next_label_nr(); set_entity_label(entity, nr); set_entity_compiler_generated(entity, 1); block->attr.block.entity = entity; } return entity; } ir_entity *get_Block_entity(const ir_node *block) { assert(is_Block(block)); return block->attr.block.entity; } void set_Block_entity(ir_node *block, ir_entity *entity) { assert(is_Block(block)); assert(get_entity_type(entity) == get_code_type()); block->attr.block.entity = entity; } int has_Block_entity(const ir_node *block) { return block->attr.block.entity != NULL; } ir_node *(get_Block_phis)(const ir_node *block) { return _get_Block_phis(block); } void (set_Block_phis)(ir_node *block, ir_node *phi) { _set_Block_phis(block, phi); } void (add_Block_phi)(ir_node *block, ir_node *phi) { _add_Block_phi(block, phi); } /* Get the Block mark (single bit). */ unsigned (get_Block_mark)(const ir_node *block) { return _get_Block_mark(block); } /* Set the Block mark (single bit). */ void (set_Block_mark)(ir_node *block, unsigned mark) { _set_Block_mark(block, mark); } int get_End_n_keepalives(const ir_node *end) { assert(is_End(end)); return (get_irn_arity(end) - END_KEEPALIVE_OFFSET); } ir_node *get_End_keepalive(const ir_node *end, int pos) { assert(is_End(end)); return get_irn_n(end, pos + END_KEEPALIVE_OFFSET); } void add_End_keepalive(ir_node *end, ir_node *ka) { assert(is_End(end)); add_irn_n(end, ka); } void set_End_keepalive(ir_node *end, int pos, ir_node *ka) { assert(is_End(end)); set_irn_n(end, pos + END_KEEPALIVE_OFFSET, ka); } /* Set new keep-alives */ void set_End_keepalives(ir_node *end, int n, ir_node *in[]) { size_t e; int i; ir_graph *irg = get_irn_irg(end); /* notify that edges are deleted */ for (e = END_KEEPALIVE_OFFSET; e < ARR_LEN(end->in) - 1; ++e) { edges_notify_edge(end, e, NULL, end->in[e + 1], irg); } ARR_RESIZE(ir_node *, end->in, n + 1 + END_KEEPALIVE_OFFSET); for (i = 0; i < n; ++i) { end->in[1 + END_KEEPALIVE_OFFSET + i] = in[i]; edges_notify_edge(end, END_KEEPALIVE_OFFSET + i, end->in[1 + END_KEEPALIVE_OFFSET + i], NULL, irg); } } /* Set new keep-alives from old keep-alives, skipping irn */ void remove_End_keepalive(ir_node *end, ir_node *irn) { int n = get_End_n_keepalives(end); int i, idx; ir_graph *irg; idx = -1; for (i = n -1; i >= 0; --i) { ir_node *old_ka = end->in[1 + END_KEEPALIVE_OFFSET + i]; /* find irn */ if (old_ka == irn) { idx = i; goto found; } } return; found: irg = get_irn_irg(end); /* remove the edge */ edges_notify_edge(end, idx, NULL, irn, irg); if (idx != n - 1) { /* exchange with the last one */ ir_node *old = end->in[1 + END_KEEPALIVE_OFFSET + n - 1]; edges_notify_edge(end, n - 1, NULL, old, irg); end->in[1 + END_KEEPALIVE_OFFSET + idx] = old; edges_notify_edge(end, idx, old, NULL, irg); } /* now n - 1 keeps, 1 block input */ ARR_RESIZE(ir_node *, end->in, (n - 1) + 1 + END_KEEPALIVE_OFFSET); } /* remove Bads, NoMems and doublets from the keep-alive set */ void remove_End_Bads_and_doublets(ir_node *end) { pset_new_t keeps; int idx, n = get_End_n_keepalives(end); ir_graph *irg; if (n <= 0) return; irg = get_irn_irg(end); pset_new_init(&keeps); for (idx = n - 1; idx >= 0; --idx) { ir_node *ka = get_End_keepalive(end, idx); if (is_Bad(ka) || is_NoMem(ka) || pset_new_contains(&keeps, ka)) { /* remove the edge */ edges_notify_edge(end, idx, NULL, ka, irg); if (idx != n - 1) { /* exchange with the last one */ ir_node *old = end->in[1 + END_KEEPALIVE_OFFSET + n - 1]; edges_notify_edge(end, n - 1, NULL, old, irg); end->in[1 + END_KEEPALIVE_OFFSET + idx] = old; edges_notify_edge(end, idx, old, NULL, irg); } --n; } else { pset_new_insert(&keeps, ka); } } /* n keeps, 1 block input */ ARR_RESIZE(ir_node *, end->in, n + 1 + END_KEEPALIVE_OFFSET); pset_new_destroy(&keeps); } void free_End(ir_node *end) { assert(is_End(end)); end->kind = k_BAD; DEL_ARR_F(end->in); end->in = NULL; /* @@@ make sure we get an error if we use the in array afterwards ... */ } size_t get_Return_n_ress(const ir_node *node) { assert(is_Return(node)); return (size_t)(get_irn_arity(node) - RETURN_RESULT_OFFSET); } ir_node **get_Return_res_arr(ir_node *node) { assert(is_Return(node)); if (get_Return_n_ress(node) > 0) return (ir_node **)&(get_irn_in(node)[1 + RETURN_RESULT_OFFSET]); else return NULL; } ir_node *get_Return_res(const ir_node *node, int pos) { assert(is_Return(node)); assert(pos >= 0); assert(get_Return_n_ress(node) > (size_t)pos); return get_irn_n(node, pos + RETURN_RESULT_OFFSET); } void set_Return_res(ir_node *node, int pos, ir_node *res) { assert(is_Return(node)); set_irn_n(node, pos + RETURN_RESULT_OFFSET, res); } int (is_Const_null)(const ir_node *node) { return _is_Const_null(node); } int (is_Const_one)(const ir_node *node) { return _is_Const_one(node); } int (is_Const_all_one)(const ir_node *node) { return _is_Const_all_one(node); } symconst_kind get_SymConst_kind(const ir_node *node) { assert(is_SymConst(node)); return node->attr.symc.kind; } void set_SymConst_kind(ir_node *node, symconst_kind kind) { assert(is_SymConst(node)); node->attr.symc.kind = kind; } ir_type *get_SymConst_type(const ir_node *node) { /* the cast here is annoying, but we have to compensate for the skip_tip() */ ir_node *irn = (ir_node *)node; assert(is_SymConst(node) && (SYMCONST_HAS_TYPE(get_SymConst_kind(node)))); return irn->attr.symc.sym.type_p; } void set_SymConst_type(ir_node *node, ir_type *tp) { assert(is_SymConst(node) && (SYMCONST_HAS_TYPE(get_SymConst_kind(node)))); node->attr.symc.sym.type_p = tp; } /* Only to access SymConst of kind symconst_addr_ent. Else assertion: */ ir_entity *get_SymConst_entity(const ir_node *node) { assert(is_SymConst(node) && SYMCONST_HAS_ENT(get_SymConst_kind(node))); return node->attr.symc.sym.entity_p; } void set_SymConst_entity(ir_node *node, ir_entity *ent) { assert(is_SymConst(node) && SYMCONST_HAS_ENT(get_SymConst_kind(node))); node->attr.symc.sym.entity_p = ent; } ir_enum_const *get_SymConst_enum(const ir_node *node) { assert(is_SymConst(node) && SYMCONST_HAS_ENUM(get_SymConst_kind(node))); return node->attr.symc.sym.enum_p; } void set_SymConst_enum(ir_node *node, ir_enum_const *ec) { assert(is_SymConst(node) && SYMCONST_HAS_ENUM(get_SymConst_kind(node))); node->attr.symc.sym.enum_p = ec; } union symconst_symbol get_SymConst_symbol(const ir_node *node) { assert(is_SymConst(node)); return node->attr.symc.sym; } void set_SymConst_symbol(ir_node *node, union symconst_symbol sym) { assert(is_SymConst(node)); node->attr.symc.sym = sym; } int get_Sel_n_indexs(const ir_node *node) { assert(is_Sel(node)); return (get_irn_arity(node) - SEL_INDEX_OFFSET); } ir_node **get_Sel_index_arr(ir_node *node) { assert(is_Sel(node)); if (get_Sel_n_indexs(node) > 0) return (ir_node **)& get_irn_in(node)[SEL_INDEX_OFFSET + 1]; else return NULL; } ir_node *get_Sel_index(const ir_node *node, int pos) { assert(is_Sel(node)); return get_irn_n(node, pos + SEL_INDEX_OFFSET); } void set_Sel_index(ir_node *node, int pos, ir_node *index) { assert(is_Sel(node)); set_irn_n(node, pos + SEL_INDEX_OFFSET, index); } ir_node **get_Call_param_arr(ir_node *node) { assert(is_Call(node)); return &get_irn_in(node)[CALL_PARAM_OFFSET + 1]; } size_t get_Call_n_params(const ir_node *node) { assert(is_Call(node)); return (size_t) (get_irn_arity(node) - CALL_PARAM_OFFSET); } ir_node *get_Call_param(const ir_node *node, int pos) { assert(is_Call(node)); return get_irn_n(node, pos + CALL_PARAM_OFFSET); } void set_Call_param(ir_node *node, int pos, ir_node *param) { assert(is_Call(node)); set_irn_n(node, pos + CALL_PARAM_OFFSET, param); } ir_node **get_Builtin_param_arr(ir_node *node) { assert(is_Builtin(node)); return &get_irn_in(node)[BUILDIN_PARAM_OFFSET + 1]; } int get_Builtin_n_params(const ir_node *node) { assert(is_Builtin(node)); return (get_irn_arity(node) - BUILDIN_PARAM_OFFSET); } ir_node *get_Builtin_param(const ir_node *node, int pos) { assert(is_Builtin(node)); return get_irn_n(node, pos + BUILDIN_PARAM_OFFSET); } void set_Builtin_param(ir_node *node, int pos, ir_node *param) { assert(is_Builtin(node)); set_irn_n(node, pos + BUILDIN_PARAM_OFFSET, param); } /* Returns a human readable string for the ir_builtin_kind. */ const char *get_builtin_kind_name(ir_builtin_kind kind) { #define X(a) case a: return #a switch (kind) { X(ir_bk_trap); X(ir_bk_debugbreak); X(ir_bk_return_address); X(ir_bk_frame_address); X(ir_bk_prefetch); X(ir_bk_ffs); X(ir_bk_clz); X(ir_bk_ctz); X(ir_bk_popcount); X(ir_bk_parity); X(ir_bk_bswap); X(ir_bk_inport); X(ir_bk_outport); X(ir_bk_inner_trampoline); } return ""; #undef X } int Call_has_callees(const ir_node *node) { assert(is_Call(node)); return ((get_irg_callee_info_state(get_irn_irg(node)) != irg_callee_info_none) && (node->attr.call.callee_arr != NULL)); } size_t get_Call_n_callees(const ir_node *node) { assert(is_Call(node) && node->attr.call.callee_arr); return ARR_LEN(node->attr.call.callee_arr); } ir_entity *get_Call_callee(const ir_node *node, size_t pos) { assert(pos < get_Call_n_callees(node)); return node->attr.call.callee_arr[pos]; } void set_Call_callee_arr(ir_node *node, size_t n, ir_entity ** arr) { ir_graph *irg = get_irn_irg(node); assert(is_Call(node)); if (node->attr.call.callee_arr == NULL || get_Call_n_callees(node) != n) { node->attr.call.callee_arr = NEW_ARR_D(ir_entity *, irg->obst, n); } memcpy(node->attr.call.callee_arr, arr, n * sizeof(ir_entity *)); } void remove_Call_callee_arr(ir_node *node) { assert(is_Call(node)); node->attr.call.callee_arr = NULL; } /* * Returns non-zero if a Call is surely a self-recursive Call. * Beware: if this functions returns 0, the call might be self-recursive! */ int is_self_recursive_Call(const ir_node *call) { const ir_node *callee = get_Call_ptr(call); if (is_SymConst_addr_ent(callee)) { const ir_entity *ent = get_SymConst_entity(callee); const ir_graph *irg = get_entity_irg(ent); if (irg == get_irn_irg(call)) return 1; } return 0; } /* Checks for upcast. * * Returns true if the Cast node casts a class type to a super type. */ int is_Cast_upcast(ir_node *node) { ir_type *totype = get_Cast_type(node); ir_type *fromtype = get_irn_typeinfo_type(get_Cast_op(node)); assert(get_irg_typeinfo_state(get_irn_irg(node)) == ir_typeinfo_consistent); assert(fromtype); while (is_Pointer_type(totype) && is_Pointer_type(fromtype)) { totype = get_pointer_points_to_type(totype); fromtype = get_pointer_points_to_type(fromtype); } assert(fromtype); if (!is_Class_type(totype)) return 0; return is_SubClass_of(fromtype, totype); } /* Checks for downcast. * * Returns true if the Cast node casts a class type to a sub type. */ int is_Cast_downcast(ir_node *node) { ir_type *totype = get_Cast_type(node); ir_type *fromtype = get_irn_typeinfo_type(get_Cast_op(node)); assert(get_irg_typeinfo_state(get_irn_irg(node)) == ir_typeinfo_consistent); assert(fromtype); while (is_Pointer_type(totype) && is_Pointer_type(fromtype)) { totype = get_pointer_points_to_type(totype); fromtype = get_pointer_points_to_type(fromtype); } assert(fromtype); if (!is_Class_type(totype)) return 0; return is_SubClass_of(totype, fromtype); } int (is_unop)(const ir_node *node) { return _is_unop(node); } ir_node *get_unop_op(const ir_node *node) { if (node->op->opar == oparity_unary) return get_irn_n(node, node->op->op_index); assert(node->op->opar == oparity_unary); return NULL; } void set_unop_op(ir_node *node, ir_node *op) { if (node->op->opar == oparity_unary) set_irn_n(node, node->op->op_index, op); assert(node->op->opar == oparity_unary); } int (is_binop)(const ir_node *node) { return _is_binop(node); } ir_node *get_binop_left(const ir_node *node) { assert(node->op->opar == oparity_binary); return get_irn_n(node, node->op->op_index); } void set_binop_left(ir_node *node, ir_node *left) { assert(node->op->opar == oparity_binary); set_irn_n(node, node->op->op_index, left); } ir_node *get_binop_right(const ir_node *node) { assert(node->op->opar == oparity_binary); return get_irn_n(node, node->op->op_index + 1); } void set_binop_right(ir_node *node, ir_node *right) { assert(node->op->opar == oparity_binary); set_irn_n(node, node->op->op_index + 1, right); } int is_Phi0(const ir_node *n) { assert(n); return ((get_irn_op(n) == op_Phi) && (get_irn_arity(n) == 0) && (get_irg_phase_state(get_irn_irg(n)) == phase_building)); } ir_node **get_Phi_preds_arr(ir_node *node) { assert(is_Phi(node)); return (ir_node **)&(get_irn_in(node)[1]); } int get_Phi_n_preds(const ir_node *node) { assert(is_Phi(node) || is_Phi0(node)); return (get_irn_arity(node)); } ir_node *get_Phi_pred(const ir_node *node, int pos) { assert(is_Phi(node) || is_Phi0(node)); return get_irn_n(node, pos); } void set_Phi_pred(ir_node *node, int pos, ir_node *pred) { assert(is_Phi(node) || is_Phi0(node)); set_irn_n(node, pos, pred); } ir_node *(get_Phi_next)(const ir_node *phi) { return _get_Phi_next(phi); } void (set_Phi_next)(ir_node *phi, ir_node *next) { _set_Phi_next(phi, next); } int is_memop(const ir_node *node) { unsigned code = get_irn_opcode(node); return (code == iro_Load || code == iro_Store); } ir_node *get_memop_mem(const ir_node *node) { assert(is_memop(node)); return get_irn_n(node, 0); } void set_memop_mem(ir_node *node, ir_node *mem) { assert(is_memop(node)); set_irn_n(node, 0, mem); } ir_node *get_memop_ptr(const ir_node *node) { assert(is_memop(node)); return get_irn_n(node, 1); } void set_memop_ptr(ir_node *node, ir_node *ptr) { assert(is_memop(node)); set_irn_n(node, 1, ptr); } ir_node **get_Sync_preds_arr(ir_node *node) { assert(is_Sync(node)); return (ir_node **)&(get_irn_in(node)[1]); } int get_Sync_n_preds(const ir_node *node) { assert(is_Sync(node)); return (get_irn_arity(node)); } /* void set_Sync_n_preds(ir_node *node, int n_preds) { assert(is_Sync(node)); } */ ir_node *get_Sync_pred(const ir_node *node, int pos) { assert(is_Sync(node)); return get_irn_n(node, pos); } void set_Sync_pred(ir_node *node, int pos, ir_node *pred) { assert(is_Sync(node)); set_irn_n(node, pos, pred); } /* Add a new Sync predecessor */ void add_Sync_pred(ir_node *node, ir_node *pred) { assert(is_Sync(node)); add_irn_n(node, pred); } int (is_arg_Proj)(const ir_node *node) { return _is_arg_Proj(node); } ir_node **get_Tuple_preds_arr(ir_node *node) { assert(is_Tuple(node)); return (ir_node **)&(get_irn_in(node)[1]); } int get_Tuple_n_preds(const ir_node *node) { assert(is_Tuple(node)); return get_irn_arity(node); } ir_node *get_Tuple_pred(const ir_node *node, int pos) { assert(is_Tuple(node)); return get_irn_n(node, pos); } void set_Tuple_pred(ir_node *node, int pos, ir_node *pred) { assert(is_Tuple(node)); set_irn_n(node, pos, pred); } int get_ASM_n_input_constraints(const ir_node *node) { assert(is_ASM(node)); return ARR_LEN(node->attr.assem.input_constraints); } int get_ASM_n_output_constraints(const ir_node *node) { assert(is_ASM(node)); return ARR_LEN(node->attr.assem.output_constraints); } int get_ASM_n_clobbers(const ir_node *node) { assert(is_ASM(node)); return ARR_LEN(node->attr.assem.clobbers); } /* returns the graph of a node */ ir_graph *(get_irn_irg)(const ir_node *node) { return _get_irn_irg(node); } /*----------------------------------------------------------------*/ /* Auxiliary routines */ /*----------------------------------------------------------------*/ ir_node *skip_Proj(ir_node *node) { /* don't assert node !!! */ if (node == NULL) return NULL; if (is_Proj(node)) node = get_Proj_pred(node); return node; } const ir_node * skip_Proj_const(const ir_node *node) { /* don't assert node !!! */ if (node == NULL) return NULL; if (is_Proj(node)) node = get_Proj_pred(node); return node; } ir_node *skip_Tuple(ir_node *node) { ir_node *pred; restart: if (is_Proj(node)) { pred = get_Proj_pred(node); if (is_Proj(pred)) { /* nested Tuple ? */ pred = skip_Tuple(pred); if (is_Tuple(pred)) { node = get_Tuple_pred(pred, get_Proj_proj(node)); goto restart; } } else if (is_Tuple(pred)) { node = get_Tuple_pred(pred, get_Proj_proj(node)); goto restart; } } return node; } /* returns operand of node if node is a Cast */ ir_node *skip_Cast(ir_node *node) { if (is_Cast(node)) return get_Cast_op(node); return node; } /* returns operand of node if node is a Cast */ const ir_node *skip_Cast_const(const ir_node *node) { if (is_Cast(node)) return get_Cast_op(node); return node; } /* returns operand of node if node is a Pin */ ir_node *skip_Pin(ir_node *node) { if (is_Pin(node)) return get_Pin_op(node); return node; } /* returns operand of node if node is a Confirm */ ir_node *skip_Confirm(ir_node *node) { if (is_Confirm(node)) return get_Confirm_value(node); return node; } /* skip all high-level ops */ ir_node *skip_HighLevel_ops(ir_node *node) { while (is_op_highlevel(get_irn_op(node))) { node = get_irn_n(node, 0); } return node; } /* This should compact Id-cycles to self-cycles. It has the same (or less?) complexity * than any other approach, as Id chains are resolved and all point to the real node, or * all id's are self loops. * * Note: This function takes 10% of mostly ANY the compiler run, so it's * a little bit "hand optimized". */ ir_node *skip_Id(ir_node *node) { ir_node *pred; /* don't assert node !!! */ if (!node || (node->op != op_Id)) return node; /* Don't use get_Id_pred(): We get into an endless loop for self-referencing Ids. */ pred = node->in[0+1]; if (pred->op != op_Id) return pred; if (node != pred) { /* not a self referencing Id. Resolve Id chain. */ ir_node *rem_pred, *res; if (pred->op != op_Id) return pred; /* shortcut */ rem_pred = pred; assert(get_irn_arity (node) > 0); node->in[0+1] = node; /* turn us into a self referencing Id: shorten Id cycles. */ res = skip_Id(rem_pred); if (is_Id(res)) /* self-loop */ return node; node->in[0+1] = res; /* Turn Id chain into Ids all referencing the chain end. */ return res; } else { return node; } } int (is_strictConv)(const ir_node *node) { return _is_strictConv(node); } /* Returns true if node is a SymConst node with kind symconst_addr_ent. */ int (is_SymConst_addr_ent)(const ir_node *node) { return _is_SymConst_addr_ent(node); } /* Returns true if the operation manipulates control flow. */ int is_cfop(const ir_node *node) { return is_op_cfopcode(get_irn_op(node)); } /* Returns true if the operation can change the control flow because of an exception. */ int is_fragile_op(const ir_node *node) { return is_op_fragile(get_irn_op(node)); } /* Returns the memory operand of fragile operations. */ ir_node *get_fragile_op_mem(ir_node *node) { assert(node && is_fragile_op(node)); switch (get_irn_opcode(node)) { case iro_Call : case iro_Div : case iro_Mod : case iro_Load : case iro_Store : case iro_Alloc : case iro_Bound : case iro_CopyB : return get_irn_n(node, pn_Generic_M); case iro_Bad : case iro_Unknown: return node; default: panic("should not be reached"); } } /* Returns true if the operation is a forking control flow operation. */ int (is_irn_forking)(const ir_node *node) { return _is_irn_forking(node); } void (copy_node_attr)(ir_graph *irg, const ir_node *old_node, ir_node *new_node) { _copy_node_attr(irg, old_node, new_node); } /* Return the type attribute of a node n (SymConst, Call, Alloc, Free, Cast) or NULL.*/ ir_type *(get_irn_type_attr)(ir_node *node) { return _get_irn_type_attr(node); } /* Return the entity attribute of a node n (SymConst, Sel) or NULL. */ ir_entity *(get_irn_entity_attr)(ir_node *node) { return _get_irn_entity_attr(node); } /* Returns non-zero for constant-like nodes. */ int (is_irn_constlike)(const ir_node *node) { return _is_irn_constlike(node); } /* * Returns non-zero for nodes that are allowed to have keep-alives and * are neither Block nor PhiM. */ int (is_irn_keep)(const ir_node *node) { return _is_irn_keep(node); } /* * Returns non-zero for nodes that are always placed in the start block. */ int (is_irn_start_block_placed)(const ir_node *node) { return _is_irn_start_block_placed(node); } /* Returns non-zero for nodes that are machine operations. */ int (is_irn_machine_op)(const ir_node *node) { return _is_irn_machine_op(node); } /* Returns non-zero for nodes that are machine operands. */ int (is_irn_machine_operand)(const ir_node *node) { return _is_irn_machine_operand(node); } /* Returns non-zero for nodes that have the n'th user machine flag set. */ int (is_irn_machine_user)(const ir_node *node, unsigned n) { return _is_irn_machine_user(node, n); } /* Returns non-zero for nodes that are CSE neutral to its users. */ int (is_irn_cse_neutral)(const ir_node *node) { return _is_irn_cse_neutral(node); } /* Gets the string representation of the jump prediction .*/ const char *get_cond_jmp_predicate_name(cond_jmp_predicate pred) { #define X(a) case a: return #a switch (pred) { X(COND_JMP_PRED_NONE); X(COND_JMP_PRED_TRUE); X(COND_JMP_PRED_FALSE); } return ""; #undef X } /** Return the attribute type of a SymConst node if exists */ static ir_type *get_SymConst_attr_type(const ir_node *self) { symconst_kind kind = get_SymConst_kind(self); if (SYMCONST_HAS_TYPE(kind)) return get_SymConst_type(self); return NULL; } /** Return the attribute entity of a SymConst node if exists */ static ir_entity *get_SymConst_attr_entity(const ir_node *self) { symconst_kind kind = get_SymConst_kind(self); if (SYMCONST_HAS_ENT(kind)) return get_SymConst_entity(self); return NULL; } /** the get_type_attr operation must be always implemented */ static ir_type *get_Null_type(const ir_node *n) { (void) n; return firm_unknown_type; } /* Sets the get_type operation for an ir_op_ops. */ ir_op_ops *firm_set_default_get_type_attr(ir_opcode code, ir_op_ops *ops) { switch (code) { case iro_SymConst: ops->get_type_attr = get_SymConst_attr_type; break; case iro_Call: ops->get_type_attr = get_Call_type; break; case iro_Alloc: ops->get_type_attr = get_Alloc_type; break; case iro_Free: ops->get_type_attr = get_Free_type; break; case iro_Cast: ops->get_type_attr = get_Cast_type; break; default: /* not allowed to be NULL */ if (! ops->get_type_attr) ops->get_type_attr = get_Null_type; break; } return ops; } /** the get_entity_attr operation must be always implemented */ static ir_entity *get_Null_ent(const ir_node *n) { (void) n; return NULL; } /* Sets the get_type operation for an ir_op_ops. */ ir_op_ops *firm_set_default_get_entity_attr(ir_opcode code, ir_op_ops *ops) { switch (code) { case iro_SymConst: ops->get_entity_attr = get_SymConst_attr_entity; break; case iro_Sel: ops->get_entity_attr = get_Sel_entity; break; default: /* not allowed to be NULL */ if (! ops->get_entity_attr) ops->get_entity_attr = get_Null_ent; break; } return ops; } /* Sets the debug information of a node. */ void (set_irn_dbg_info)(ir_node *n, dbg_info *db) { _set_irn_dbg_info(n, db); } /** * Returns the debug information of an node. * * @param n The node. */ dbg_info *(get_irn_dbg_info)(const ir_node *n) { return _get_irn_dbg_info(n); } /* checks whether a node represents a global address */ int is_Global(const ir_node *node) { return is_SymConst_addr_ent(node); } /* returns the entity of a global address */ ir_entity *get_Global_entity(const ir_node *node) { return get_SymConst_entity(node); } /* * Calculate a hash value of a node. */ unsigned firm_default_hash(const ir_node *node) { unsigned h; int i, irn_arity; /* hash table value = 9*(9*(9*(9*(9*arity+in[0])+in[1])+ ...)+mode)+code */ h = irn_arity = get_irn_arity(node); /* consider all in nodes... except the block if not a control flow. */ for (i = is_cfop(node) ? -1 : 0; i < irn_arity; ++i) { ir_node *pred = get_irn_n(node, i); if (is_irn_cse_neutral(pred)) h *= 9; else h = 9*h + HASH_PTR(pred); } /* ...mode,... */ h = 9*h + HASH_PTR(get_irn_mode(node)); /* ...and code */ h = 9*h + HASH_PTR(get_irn_op(node)); return h; } /* firm_default_hash */ /* include generated code */ #include "gen_irnode.c.inl"