/* * Copyright (C) 1995-2008 University of Karlsruhe. All right reserved. * * This file is part of libFirm. * * This file may be distributed and/or modified under the terms of the * GNU General Public License version 2 as published by the Free Software * Foundation and appearing in the file LICENSE.GPL included in the * packaging of this file. * * Licensees holding valid libFirm Professional Edition licenses may use * this file in accordance with the libFirm Commercial License. * Agreement provided with the Software. * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE. */ /** * @file * @brief Optimizations regarding Confirm nodes. * @author Michael Beck */ #include "config.h" #undef DEBUG_CONFIRM #include "tv_t.h" #include "irnode_t.h" #include "iropt_t.h" #include "iropt_dbg.h" #include "iroptimize.h" #include "irflag_t.h" #include "irprintf.h" enum range_tags { MIN_INCLUDED = 0x00, /**< [min, ... */ MAX_INCLUDED = 0x00, /**< ..., max] */ MIN_EXCLUDED = 0x01, /**< (min, ... */ MAX_EXCLUDED = 0x02 /**< ..., max) */ }; /** * An interval. We could use * intervals that ALWAYS include its borders, even for * floating point, as the precision is limited. * However, as our tarval module did not support * such kind of operation, we use border flags allowing * all intervals. */ typedef struct interval_t { ir_tarval *min; /**< lowest border */ ir_tarval *max; /**< highest border */ unsigned char flags; /**< border flags */ } interval_t; #ifdef DEBUG_CONFIRM #define compare_iv(l_iv, r_iv, relation) compare_iv_dbg(l_iv, r_iv, relation) /* forward */ static tarval *compare_iv_dbg(const interval_t *l_iv, const interval_t *r_iv, ir_relation relation); /* triangle */ #define DBG_OUT_TR(l_relation, l_bound, r_relation, r_bound, relation, v) \ ir_printf("In %e:\na %= %n && b %= %n ==> a %= b == %s\n", \ get_irg_entity(current_ir_graph), \ l_relation, l_bound, r_relation, r_bound, relation, v) /* right side */ #define DBG_OUT_R(r_relation, r_bound, left, relation, right, v) \ ir_printf("In %e:\na %= %n ==> %n %= %n == %s\n", \ get_irg_entity(current_ir_graph), \ r_relation, r_bound, left, relation, right, v) /* left side */ #define DBG_OUT_L(l_relation, l_bound, left, relation, right, v) \ ir_printf("In %e:\na %= %n ==> %n %= %n == %s\n", \ get_irg_entity(current_ir_graph), \ l_relation, l_bound, left, relation, right, v) #else #define DBG_OUT_TR(l_relation, l_bound, r_relation, r_bound, relation, v) (void)0 #define DBG_OUT_R(r_relation, r_bound, left, relation, right, v) (void)0 #define DBG_OUT_L(l_relation, l_bound, left, relation, right, v) (void)0 #endif /* DEBUG_CONFIRM */ /* * Check, if the value of a node is != 0. * * This is a often needed case, so we handle here Confirm * nodes too. */ FIRM_API int value_not_zero(const ir_node *n, ir_node_cnst_ptr *confirm) { #define RET_ON(x) if (x) { *confirm = n; return 1; } break ir_tarval *tv; ir_mode *mode = get_irn_mode(n); ir_relation relation; *confirm = NULL; /* there might be several Confirms one after other that form an interval */ for (;;) { if (is_Minus(n)) { /* we can safely skip Minus when checking for != 0 */ n = get_unop_op(n); continue; } if (! is_Confirm(n)) break; /* * Note: A Confirm is never after a Const. So, * we simply can check the bound for being a Const * without the fear that is might be hidden by a further Confirm. */ tv = value_of(get_Confirm_bound(n)); if (tv == tarval_bad) return 0; relation = tarval_cmp(tv, get_mode_null(mode)); /* * Beware: C might by a NaN. It is not clear, what we should do * than. Of course a NaN is != 0, but we might use this function * to remove up Exceptions, and NaN's might generate Exception. * So, we do NOT handle NaNs here for safety. * * Note that only the C != 0 case need additional checking. */ switch (get_Confirm_relation(n)) { case ir_relation_equal: /* n == C /\ C != 0 ==> n != 0 */ RET_ON(relation != ir_relation_equal && relation != ir_relation_unordered); case ir_relation_less_greater: /* n != C /\ C == 0 ==> n != 0 */ RET_ON(relation == ir_relation_equal); case ir_relation_less: /* n < C /\ C <= 0 ==> n != 0 */ RET_ON(relation == ir_relation_less || relation == ir_relation_equal); case ir_relation_less_equal: /* n <= C /\ C < 0 ==> n != 0 */ RET_ON(relation == ir_relation_less); case ir_relation_greater_equal: /* n >= C /\ C > 0 ==> n != 0 */ RET_ON(relation == ir_relation_greater); case ir_relation_greater: /* n > C /\ C >= 0 ==> n != 0 */ RET_ON(relation == ir_relation_greater || relation == ir_relation_equal); default: break; } n = get_Confirm_value(n); } tv = value_of(n); if (tv == tarval_bad) return 0; relation = tarval_cmp(tv, get_mode_null(mode)); /* again, need check for NaN */ return (relation != ir_relation_equal) && (relation != ir_relation_unordered); #undef RET_ON } /* value_not_zero */ /* * Check, if the value of a node cannot represent a NULL pointer. * * - Casts are skipped, Sels are skipped * - A SymConst(entity) is NEVER a NULL pointer * - Confirms are evaluated */ FIRM_API int value_not_null(const ir_node *n, ir_node_cnst_ptr *confirm) { ir_tarval *tv; *confirm = NULL; n = skip_Cast_const(n); tv = value_of(n); if (tarval_is_constant(tv) && ! tarval_is_null(tv)) return 1; assert(mode_is_reference(get_irn_mode(n))); /* skip all Sel nodes and Cast's */ while (is_Sel(n)) { n = skip_Cast(get_Sel_ptr(n)); } while (1) { if (is_Cast(n)) { n = get_Cast_op(n); continue; } if (is_Proj(n)) { n = get_Proj_pred(n); continue; } break; } if (is_SymConst_addr_ent(n)) { /* global references are never NULL */ return 1; } else if (n == get_irg_frame(get_irn_irg(n))) { /* local references are never NULL */ return 1; } else if (is_Alloc(n)) { /* alloc never returns NULL (it throws an exception instead) */ return 1; } else { /* check for more Confirms */ for (; is_Confirm(n); n = skip_Cast(get_Confirm_value(n))) { if (get_Confirm_relation(n) == ir_relation_less_greater) { ir_node *bound = get_Confirm_bound(n); ir_tarval *tv = value_of(bound); if (tarval_is_null(tv)) { *confirm = n; return 1; } } } } return 0; } /* value_not_null */ #ifdef __cplusplus extern "C++" { static inline ir_value_classify_sign operator *(ir_value_classify_sign sign, int mul) { return (ir_value_classify_sign) (sign*mul); } } #endif /* * Check, if the value of a node can be confirmed >= 0 or <= 0, * If the mode of the value did not honor signed zeros, else * check for >= 0 or < 0. */ FIRM_API ir_value_classify_sign classify_value_sign(ir_node *n) { ir_tarval *tv, *c; ir_mode *mode; ir_relation cmp, ncmp; int negate = 1; for (;;) { unsigned code = get_irn_opcode(n); switch (code) { case iro_Minus: negate *= -1; n = get_Minus_op(n); continue; case iro_Confirm: break; default: return value_classified_unknown; } break; } if (!is_Confirm(n)) return value_classified_unknown; tv = value_of(get_Confirm_bound(n)); if (tv == tarval_bad) return value_classified_unknown; mode = get_irn_mode(n); /* * We can handle only >=, >, <, <= cases. * We could handle == too, but this will be optimized into * a constant either. * * Note that for integer modes we have a slightly better * optimization possibilities, so we handle this * different. */ cmp = get_Confirm_relation(n); switch (cmp) { case ir_relation_less: /* * must be x < c <= 1 to be useful if integer mode and -0 = 0 * x < c <= 0 to be useful else */ case ir_relation_less_equal: /* * must be x <= c < 1 to be useful if integer mode and -0 = 0 * x <= c < 0 to be useful else */ c = mode_is_int(mode) && mode_honor_signed_zeros(mode) ? get_mode_one(mode) : get_mode_null(mode); ncmp = tarval_cmp(tv, c); if (ncmp == ir_relation_equal) ncmp = ir_relation_less_equal; if (cmp != (ncmp ^ ir_relation_equal)) return value_classified_unknown; /* yep, negative */ return value_classified_negative * negate; case ir_relation_greater_equal: /* * must be x >= c > -1 to be useful if integer mode * x >= c >= 0 to be useful else */ case ir_relation_greater: /* * must be x > c >= -1 to be useful if integer mode * x > c >= 0 to be useful else */ if (mode_is_int(mode)) { c = get_mode_minus_one(mode); ncmp = tarval_cmp(tv, c); if (ncmp == ir_relation_equal) ncmp = ir_relation_greater_equal; if (cmp != (ncmp ^ ir_relation_equal)) return value_classified_unknown; } else { c = get_mode_minus_one(mode); ncmp = tarval_cmp(tv, c); if (ncmp != ir_relation_equal && ncmp != ir_relation_greater) return value_classified_unknown; } /* yep, positive */ return value_classified_positive * negate; default: return value_classified_unknown; } } /* classify_value_sign */ /** * construct an interval from a value * * @return the filled interval or NULL if no interval * can be created (happens only on floating point */ static interval_t *get_interval_from_tv(interval_t *iv, ir_tarval *tv) { ir_mode *mode = get_tarval_mode(tv); if (tv == tarval_bad) { if (mode_is_float(mode)) { /* NaN could be included which we cannot handle */ iv->min = tarval_bad; iv->max = tarval_bad; iv->flags = MIN_EXCLUDED | MAX_EXCLUDED; return NULL; } else { /* [-oo, +oo] */ iv->min = get_mode_min(mode); iv->max = get_mode_max(mode); iv->flags = MIN_INCLUDED | MAX_INCLUDED; return iv; } } if (mode_is_float(mode)) { if (tv == get_mode_NAN(mode)) { /* arg, we cannot handle NaN's. */ iv->min = tarval_bad; iv->max = tarval_bad; iv->flags = MIN_EXCLUDED | MAX_EXCLUDED; return NULL; } } /* [tv, tv] */ iv->min = tv; iv->max = tv; iv->flags = MIN_INCLUDED | MAX_INCLUDED; return iv; } /* get_interval_from_tv */ /** * construct an interval from a Confirm * * @param iv an empty interval, will be filled * @param bound the bound value * @param relation the Confirm compare relation * * @return the filled interval or NULL if no interval * can be created (happens only on floating point */ static interval_t *get_interval(interval_t *iv, ir_node *bound, ir_relation relation) { ir_mode *mode = get_irn_mode(bound); ir_tarval *tv = value_of(bound); if (tv == tarval_bad) { /* There is nothing we could do here. For integer * modes we could return [-oo, +oo], but there is * nothing we could deduct from such an interval. * So, speed things up and return unknown. */ iv->min = tarval_bad; iv->max = tarval_bad; iv->flags = MIN_EXCLUDED | MAX_EXCLUDED; return NULL; } if (mode_is_float(mode)) { if (tv == get_mode_NAN(mode)) { /* arg, we cannot handle NaN's. */ iv->min = tarval_bad; iv->max = tarval_bad; iv->flags = MIN_EXCLUDED | MAX_EXCLUDED; return NULL; } } /* check which side is known */ switch (relation) { case ir_relation_equal: /* [tv, tv] */ iv->min = iv->max = tv; iv->flags = MIN_INCLUDED | MAX_INCLUDED; break; case ir_relation_less_equal: /* [-oo, tv] */ iv->min = get_mode_min(mode); iv->max = tv; iv->flags = MIN_INCLUDED | MAX_INCLUDED; break; case ir_relation_less: /* [-oo, tv) */ iv->min = get_mode_min(mode); iv->max = tv; iv->flags = MIN_INCLUDED | MAX_EXCLUDED; break; case ir_relation_greater: /* (tv, +oo] */ iv->min = tv; iv->max = get_mode_max(mode); iv->flags = MIN_EXCLUDED | MAX_INCLUDED; break; case ir_relation_greater_equal: /* [tv, +oo] */ iv->min = tv; iv->max = get_mode_max(mode); iv->flags = MIN_INCLUDED | MAX_INCLUDED; break; case ir_relation_less_equal_greater: /* * Ordered means, that at least neither * our bound nor our value ara NaN's */ /* [-oo, +oo] */ iv->min = get_mode_min(mode); iv->max = get_mode_max(mode); iv->flags = MIN_INCLUDED | MAX_INCLUDED; break; default: /* * We do not handle UNORDERED, as a NaN * could be included in the interval. */ iv->min = tarval_bad; iv->max = tarval_bad; iv->flags = MIN_EXCLUDED | MAX_EXCLUDED; return NULL; } if (iv->min != tarval_bad && iv->max != tarval_bad) return iv; return NULL; } /* get_interval */ /** * Try to evaluate l_iv relation r_iv. * * @param l_iv the left interval * @param r_iv the right interval * @param relation the compare relation * * @return * tarval_b_true or tarval_b_false it it can be evaluated, * tarval_bad else */ static ir_tarval *(compare_iv)(const interval_t *l_iv, const interval_t *r_iv, ir_relation relation) { ir_relation res; unsigned flags; ir_tarval *tv_true = tarval_b_true, *tv_false = tarval_b_false; /* if one interval contains NaNs, we cannot evaluate anything */ if (! l_iv || ! r_iv) return tarval_bad; /* we can only check ordered relations */ if (relation & ir_relation_unordered) { ir_tarval *t; relation = get_negated_relation(relation); t = tv_true; tv_true = tv_false; tv_false = t; } /* if we have > or >=, we do the inverse to save some cases */ if (relation == ir_relation_greater_equal || relation == ir_relation_greater) { const interval_t *t; relation = get_inversed_relation(relation); t = l_iv; l_iv = r_iv; r_iv = t; } /* now, only the following cases remains */ switch (relation) { case ir_relation_equal: /* two intervals can be compared for equality only if they are a single value */ if (l_iv->min == l_iv->max && r_iv->min == r_iv->max) return tarval_cmp(l_iv->min, r_iv->min) == ir_relation_equal ? tv_true : tv_false; /* if both intervals do not intersect, it is never equal */ res = tarval_cmp(l_iv->max, r_iv->min); /* b < c ==> [a,b] != [c,d] */ if (res == ir_relation_less) return tv_false; /* b <= c ==> [a,b) != [c,d] AND [a,b] != (c,d] */ if ((l_iv->flags & MAX_EXCLUDED || r_iv->flags & MIN_EXCLUDED) && (res == ir_relation_equal)) return tv_false; res = tarval_cmp(r_iv->max, l_iv->min); /* d < a ==> [c,d] != [a,b] */ if (res == ir_relation_less) return tv_false; /* d <= a ==> [c,d) != [a,b] AND [c,d] != (a,b] */ if ((r_iv->flags & MAX_EXCLUDED || l_iv->flags & MIN_EXCLUDED) && (res == ir_relation_equal)) return tv_false; break; case ir_relation_less_greater: /* two intervals can be compared for not equality only if they are a single value */ if (l_iv->min == l_iv->max && r_iv->min == r_iv->max) return tarval_cmp(l_iv->min, r_iv->min) != ir_relation_equal ? tv_true : tv_false; break; case ir_relation_less: res = tarval_cmp(l_iv->max, r_iv->min); /* [a, b] < [c, d] <==> b < c */ if (res == ir_relation_less) return tv_true; /* if one border is excluded, b <= c is enough */ if ((l_iv->flags & MAX_EXCLUDED || r_iv->flags & MIN_EXCLUDED) && res == ir_relation_equal) return tv_true; /* [a, b] >= [c, d] <==> a > d */ res = tarval_cmp(l_iv->min, r_iv->max); if (res == ir_relation_greater) return tv_false; /* if one border is excluded, a >= d is enough */ if ((l_iv->flags & MIN_EXCLUDED || r_iv->flags & MAX_EXCLUDED) && res == ir_relation_equal) return tv_false; break; case ir_relation_less_equal: /* [a, b) <= [c, d] or [a, b] <= (c, d] <==> b <= c */ flags = (l_iv->flags & MAX_EXCLUDED) | (r_iv->flags & MIN_EXCLUDED); if (flags) { res = tarval_cmp(l_iv->max, r_iv->min); if (res == ir_relation_less || res == ir_relation_equal) return tv_true; } res = tarval_cmp(l_iv->min, r_iv->max); /* [a, b] > [c, d] <==> a > d */ if (res == ir_relation_greater) return tv_false; /* if one border is excluded, a >= d is enough */ if ((l_iv->flags & MIN_EXCLUDED || r_iv->flags & MAX_EXCLUDED) && res == ir_relation_equal) return tv_false; break; case ir_relation_less_equal_greater: /* Hmm. if both are intervals, we can find an order */ return tv_true; default: return tarval_bad; } return tarval_bad; } /* compare_iv */ /** * Returns non-zero, if a given relation is transitive. */ static int is_transitive(ir_relation relation) { return (ir_relation_false < relation && relation < ir_relation_less_greater); } /* is_transitive */ /** * Return the value of a Cmp if one or both predecessors * are Confirm nodes. * * @param cmp the Cmp node * @param left the left operand of the Cmp * @param right the right operand of the Cmp * @param relation the compare relation */ FIRM_API ir_tarval *computed_value_Cmp_Confirm(const ir_node *cmp, ir_node *left, ir_node *right, ir_relation relation) { ir_node *l_bound; ir_relation l_relation, res_relation, neg_relation; interval_t l_iv, r_iv; ir_tarval *tv; if (is_Confirm(right)) { /* we want the Confirm on the left side */ ir_node *t = right; right = left; left = t; relation = get_inversed_relation(relation); } else if (! is_Confirm(left)) { /* nothing more found */ tv = tarval_bad; goto check_null_case; } /* ok, here at least left is a Confirm, right might be */ l_bound = get_Confirm_bound(left); l_relation = get_Confirm_relation(left); if (is_Confirm(right)) { /* * both sides are Confirm's. Check some rare cases first. */ ir_node *r_bound = get_Confirm_bound(right); ir_relation r_relation = get_Confirm_relation(right); /* * some check can be made WITHOUT constant bounds */ if (r_bound == l_bound) { if (is_transitive(l_relation)) { ir_relation r_inc_relation = get_inversed_relation(r_relation); /* * triangle inequality: * * a CMP B && B CMP b => a CMP b, !(a ~CMP b) * * We handle correctly cases with some <=/>= here */ if ((l_relation & ~ir_relation_equal) == (r_inc_relation & ~ir_relation_equal)) { res_relation = (l_relation & ~ir_relation_equal) | (l_relation & r_inc_relation & ir_relation_equal); if ((relation == res_relation) || ((relation & ~ir_relation_equal) == res_relation)) { DBG_OUT_TR(l_relation, l_bound, r_relation, r_bound, relation, "true"); DBG_EVAL_CONFIRM(cmp); return tarval_b_true; } else { ir_relation neg_relation = get_negated_relation(relation); if ((neg_relation == res_relation) || ((neg_relation & ~ir_relation_equal) == res_relation)) { DBG_OUT_TR(l_relation, l_bound, r_relation, r_bound, relation, "false"); DBG_EVAL_CONFIRM(cmp); return tarval_b_false; } } } } } /* * Here, we check only the right Confirm, as the left Confirms are * checked later anyway. */ if (left == r_bound) { /* * l == bound(r) AND relation(r) == relation: * * We know that a CMP b and check for that */ if ((r_relation == relation) || (r_relation == (relation & ~ir_relation_equal))) { DBG_OUT_R(r_relation, r_bound, left, relation, right, "true"); DBG_EVAL_CONFIRM(cmp); return tarval_b_true; } /* * l == bound(r) AND relation(r) != relation: * * We know that a CMP b and check for a ~CMP b */ else { neg_relation = get_negated_relation(relation); if ((r_relation == neg_relation) || (r_relation == (neg_relation & ~ir_relation_equal))) { DBG_OUT_R(r_relation, r_bound, left, relation, right, "false"); DBG_EVAL_CONFIRM(cmp); return tarval_b_false; } } } /* now, try interval magic */ tv = compare_iv( get_interval(&l_iv, l_bound, l_relation), get_interval(&r_iv, r_bound, r_relation), relation); if (tv != tarval_bad) { DBG_EVAL_CONFIRM(cmp); return tv; } } /* from Here, check only left Confirm */ /* * some checks can be made WITHOUT constant bounds */ if (right == l_bound) { /* * r == bound(l) AND relation(l) == relation: * * We know that a CMP b and check for that */ if ((l_relation == relation) || (l_relation == (relation & ~ir_relation_equal))) { DBG_OUT_L(l_relation, l_bound, left, relation, right, "true"); DBG_EVAL_CONFIRM(cmp); return tarval_b_true; } /* * r == bound(l) AND relation(l) is Not(relation): * * We know that a CMP b and check for a ~CMP b */ else { neg_relation = get_negated_relation(relation); if ((l_relation == neg_relation) || (l_relation == (neg_relation & ~ir_relation_equal))) { DBG_OUT_L(l_relation, l_bound, left, relation, right, "false"); DBG_EVAL_CONFIRM(cmp); return tarval_b_false; } } } /* now, only right == Const can help */ tv = value_of(right); if (tv != tarval_bad) { tv = compare_iv( get_interval(&l_iv, l_bound, l_relation), get_interval_from_tv(&r_iv, tv), relation); } else { check_null_case: /* check some other cases */ if ((relation == ir_relation_equal || relation == ir_relation_less_greater) && is_Const(right) && is_Const_null(right)) { /* for == 0 or != 0 we have some special tools */ ir_mode *mode = get_irn_mode(left); const ir_node *dummy; if (mode_is_reference(mode)) { if (value_not_null(left, &dummy)) { tv = relation == ir_relation_equal ? tarval_b_false : tarval_b_true; } } else { if (value_not_zero(left, &dummy)) { tv = relation == ir_relation_equal ? tarval_b_false : tarval_b_true; } } } } if (tv != tarval_bad) DBG_EVAL_CONFIRM(cmp); return tv; } /* computed_value_Cmp_Confirm */ #ifdef DEBUG_CONFIRM /** * For debugging. Prints an interval into a string. * * @param buf address of a string buffer * @param len length of the string buffer * @param iv the interval */ static int iv_snprintf(char *buf, size_t len, const interval_t *iv) { char smin[64], smax[64]; if (iv) { tarval_snprintf(smin, sizeof(smin), iv->min); if (iv->min != iv->max || (iv->flags & (MIN_EXCLUDED|MAX_EXCLUDED))) { tarval_snprintf(smax, sizeof(smax), iv->max); return snprintf(buf, len, "%c%s, %s%c", iv->flags & MIN_EXCLUDED ? '(' : '[', smin, smax, iv->flags & MAX_EXCLUDED ? ')' : ']' ); } else return snprintf(buf, len, "%s", smin); } return snprintf(buf, len, ""); } /* iv_snprintf */ /** * For debugging. Prints an interval compare. * * @param l_iv the left interval * @param r_iv the right interval * @param relation the compare relation */ static void print_iv_cmp(const interval_t *l_iv, const interval_t *r_iv, ir_relation relation) { char sl[128], sr[128]; iv_snprintf(sl, sizeof(sl), l_iv); iv_snprintf(sr, sizeof(sr), r_iv); ir_printf("%s %= %s", sl, relation, sr); } /* print_iv_cmp */ /** * For debugging. call *compare_iv() and prints inputs and result. * * @param l_iv the left interval * @param r_iv the right interval * @param relation the compare relation */ static tarval *compare_iv_dbg(const interval_t *l_iv, const interval_t *r_iv, ir_relation relation) { tarval *tv = (compare_iv)(l_iv, r_iv, relation); if (tv == tarval_bad) return tv; ir_printf("In %e:\n", get_irg_entity(current_ir_graph)); print_iv_cmp(l_iv, r_iv, relation); ir_printf(" = %T\n", tv); return tv; } /* compare_iv_dbg */ #endif /* DEBUG_CONFIRM */