/* * This file is part of libFirm. * Copyright (C) 2012 University of Karlsruhe. */ /** * @file * @brief Data modes of operations. * @author Martin Trapp, Christian Schaefer, Goetz Lindenmaier, Mathias Heil */ #include #include #include #include "irprog_t.h" #include "irmode_t.h" #include "ident.h" #include "tv_t.h" #include "obst.h" #include "irhooks.h" #include "array.h" #include "error.h" #include "pattern_dmp.h" /** Obstack to hold all modes. */ static struct obstack modes; /** The list of all currently existing modes. */ static ir_mode **mode_list; static bool modes_are_equal(const ir_mode *m, const ir_mode *n) { return m->sort == n->sort && m->arithmetic == n->arithmetic && m->size == n->size && m->sign == n->sign && m->modulo_shift == n->modulo_shift; } /** * searches the modes obstack for the given mode and returns * a pointer on an equal mode already in the array, NULL if * none found */ static ir_mode *find_mode(const ir_mode *m) { size_t i, n_modes; for (i = 0, n_modes = ARR_LEN(mode_list); i < n_modes; ++i) { ir_mode *n = mode_list[i]; if (modes_are_equal(n, m)) return n; } return NULL; } /** * sets special values of modes */ static void set_mode_values(ir_mode* mode) { switch (get_mode_sort(mode)) { case irms_reference: case irms_int_number: case irms_float_number: mode->min = get_tarval_min(mode); mode->max = get_tarval_max(mode); mode->null = get_tarval_null(mode); mode->one = get_tarval_one(mode); mode->minus_one = get_tarval_minus_one(mode); if (get_mode_sort(mode) != irms_float_number) { mode->all_one = get_tarval_all_one(mode); } else { mode->all_one = tarval_bad; } break; case irms_internal_boolean: mode->min = tarval_b_false; mode->max = tarval_b_true; mode->null = tarval_b_false; mode->one = tarval_b_true; mode->minus_one = tarval_bad; mode->all_one = tarval_b_true; break; case irms_control_flow: case irms_block: case irms_tuple: case irms_any: case irms_bad: case irms_memory: mode->min = tarval_bad; mode->max = tarval_bad; mode->null = tarval_bad; mode->one = tarval_bad; mode->minus_one = tarval_bad; break; } } ir_mode *mode_T; ir_mode *mode_X; ir_mode *mode_M; ir_mode *mode_BB; ir_mode *mode_ANY; ir_mode *mode_BAD; ir_mode *mode_F; ir_mode *mode_D; ir_mode *mode_Q; ir_mode *mode_Bs; ir_mode *mode_Bu; ir_mode *mode_Hs; ir_mode *mode_Hu; ir_mode *mode_Is; ir_mode *mode_Iu; ir_mode *mode_Ls; ir_mode *mode_Lu; ir_mode *mode_LLs; ir_mode *mode_LLu; ir_mode *mode_b; ir_mode *mode_P; ir_mode *mode_P_code; ir_mode *mode_P_data; ir_mode *get_modeT(void) { return mode_T; } ir_mode *get_modeF(void) { return mode_F; } ir_mode *get_modeD(void) { return mode_D; } ir_mode *get_modeQ(void) { return mode_Q; } ir_mode *get_modeBs(void) { return mode_Bs; } ir_mode *get_modeBu(void) { return mode_Bu; } ir_mode *get_modeHs(void) { return mode_Hs; } ir_mode *get_modeHu(void) { return mode_Hu; } ir_mode *get_modeIs(void) { return mode_Is; } ir_mode *get_modeIu(void) { return mode_Iu; } ir_mode *get_modeLs(void) { return mode_Ls; } ir_mode *get_modeLu(void) { return mode_Lu; } ir_mode *get_modeLLs(void){ return mode_LLs; } ir_mode *get_modeLLu(void){ return mode_LLu; } ir_mode *get_modeb(void) { return mode_b; } ir_mode *get_modeP(void) { return mode_P; } ir_mode *get_modeX(void) { return mode_X; } ir_mode *get_modeM(void) { return mode_M; } ir_mode *get_modeBB(void) { return mode_BB; } ir_mode *get_modeANY(void) { return mode_ANY; } ir_mode *get_modeBAD(void) { return mode_BAD; } ir_mode *(get_modeP_code)(void) { return get_modeP_code_(); } ir_mode *(get_modeP_data)(void) { return get_modeP_data_(); } void set_modeP_code(ir_mode *p) { assert(mode_is_reference(p)); mode_P_code = p; } void set_modeP_data(ir_mode *p) { assert(mode_is_reference(p)); mode_P_data = p; mode_P = p; } /* * Creates a new mode. */ static ir_mode *alloc_mode(const char *name, ir_mode_sort sort, ir_mode_arithmetic arithmetic, unsigned bit_size, int sign, unsigned modulo_shift) { ir_mode *mode_tmpl = OALLOCZ(&modes, ir_mode); mode_tmpl->name = new_id_from_str(name); mode_tmpl->sort = sort; mode_tmpl->size = bit_size; mode_tmpl->sign = sign ? 1 : 0; mode_tmpl->modulo_shift = modulo_shift; mode_tmpl->arithmetic = arithmetic; mode_tmpl->link = NULL; return mode_tmpl; } static ir_mode *register_mode(ir_mode *mode) { /* does any of the existing modes have the same properties? */ ir_mode *old = find_mode(mode); if (old != NULL) { /* remove new mode from obstack */ obstack_free(&modes, mode); return old; } mode->kind = k_ir_mode; mode->type = new_type_primitive(mode); ARR_APP1(ir_mode*, mode_list, mode); set_mode_values(mode); hook_new_mode(mode); return mode; } ir_mode *new_int_mode(const char *name, ir_mode_arithmetic arithmetic, unsigned bit_size, int sign, unsigned modulo_shift) { ir_mode *result = alloc_mode(name, irms_int_number, arithmetic, bit_size, sign, modulo_shift); return register_mode(result); } ir_mode *new_reference_mode(const char *name, ir_mode_arithmetic arithmetic, unsigned bit_size, unsigned modulo_shift) { ir_mode *result = alloc_mode(name, irms_reference, arithmetic, bit_size, 0, modulo_shift); return register_mode(result); } ir_mode *new_float_mode(const char *name, ir_mode_arithmetic arithmetic, unsigned exponent_size, unsigned mantissa_size) { bool explicit_one = false; unsigned bit_size = exponent_size + mantissa_size + 1; ir_mode *result; if (arithmetic == irma_x86_extended_float) { explicit_one = true; bit_size++; } else if (arithmetic != irma_ieee754) { panic("Arithmetic %s invalid for float"); } if (exponent_size >= 256) panic("Exponents >= 256 bits not supported"); if (mantissa_size >= 256) panic("Mantissa >= 256 bits not supported"); result = alloc_mode(name, irms_float_number, arithmetic, bit_size, 1, 0); result->float_desc.exponent_size = exponent_size; result->float_desc.mantissa_size = mantissa_size; result->float_desc.explicit_one = explicit_one; return register_mode(result); } ident *(get_mode_ident)(const ir_mode *mode) { return get_mode_ident_(mode); } const char *get_mode_name(const ir_mode *mode) { return get_id_str(mode->name); } unsigned (get_mode_size_bits)(const ir_mode *mode) { return get_mode_size_bits_(mode); } unsigned (get_mode_size_bytes)(const ir_mode *mode) { return get_mode_size_bytes_(mode); } int (get_mode_sign)(const ir_mode *mode) { return get_mode_sign_(mode); } ir_mode_arithmetic (get_mode_arithmetic)(const ir_mode *mode) { return get_mode_arithmetic_(mode); } unsigned int (get_mode_modulo_shift)(const ir_mode *mode) { return get_mode_modulo_shift_(mode); } void *(get_mode_link)(const ir_mode *mode) { return get_mode_link_(mode); } void (set_mode_link)(ir_mode *mode, void *l) { set_mode_link_(mode, l); } ir_tarval *get_mode_min(ir_mode *mode) { assert(mode); assert(mode_is_data(mode)); return mode->min; } ir_tarval *get_mode_max(ir_mode *mode) { assert(mode); assert(mode_is_data(mode)); return mode->max; } ir_tarval *get_mode_null(ir_mode *mode) { assert(mode); assert(mode_is_datab(mode)); return mode->null; } ir_tarval *get_mode_one(ir_mode *mode) { assert(mode); assert(mode_is_datab(mode)); return mode->one; } ir_tarval *get_mode_minus_one(ir_mode *mode) { assert(mode); assert(mode_is_data(mode)); return mode->minus_one; } ir_tarval *get_mode_all_one(ir_mode *mode) { assert(mode); assert(mode_is_datab(mode)); return mode->all_one; } ir_tarval *get_mode_infinite(ir_mode *mode) { assert(mode); assert(mode_is_float(mode)); return get_tarval_plus_inf(mode); } ir_tarval *get_mode_NAN(ir_mode *mode) { assert(mode); assert(mode_is_float(mode)); return get_tarval_nan(mode); } int is_mode(const void *thing) { return get_kind(thing) == k_ir_mode; } int (mode_is_signed)(const ir_mode *mode) { return mode_is_signed_(mode); } int (mode_is_float)(const ir_mode *mode) { return mode_is_float_(mode); } int (mode_is_int)(const ir_mode *mode) { return mode_is_int_(mode); } int (mode_is_reference)(const ir_mode *mode) { return mode_is_reference_(mode); } int (mode_is_num)(const ir_mode *mode) { return mode_is_num_(mode); } int (mode_is_data)(const ir_mode *mode) { return mode_is_data_(mode); } int (mode_is_datab)(const ir_mode *mode) { return mode_is_datab_(mode); } int (mode_is_dataM)(const ir_mode *mode) { return mode_is_dataM_(mode); } unsigned (get_mode_mantissa_size)(const ir_mode *mode) { return get_mode_mantissa_size_(mode); } unsigned (get_mode_exponent_size)(const ir_mode *mode) { return get_mode_exponent_size_(mode); } int smaller_mode(const ir_mode *sm, const ir_mode *lm) { int sm_bits, lm_bits; assert(sm); assert(lm); if (sm == lm) return 1; sm_bits = get_mode_size_bits(sm); lm_bits = get_mode_size_bits(lm); switch (get_mode_sort(sm)) { case irms_int_number: switch (get_mode_sort(lm)) { case irms_int_number: if (get_mode_arithmetic(sm) != get_mode_arithmetic(lm)) return 0; /* only two complement implemented */ assert(get_mode_arithmetic(sm) == irma_twos_complement); /* integers are convertable if * - both have the same sign and lm is the larger one * - lm is the signed one and is at least two bits larger * (one for the sign, one for the highest bit of sm) * - sm & lm are two_complement and lm has greater or equal number of bits */ if (mode_is_signed(sm)) { if (!mode_is_signed(lm)) return 0; return sm_bits <= lm_bits; } else { if (mode_is_signed(lm)) { return sm_bits < lm_bits; } return sm_bits <= lm_bits; } case irms_float_number: /* int to float works if the float is large enough */ return 0; default: break; } break; case irms_float_number: if (get_mode_arithmetic(sm) == get_mode_arithmetic(lm)) { if ( (get_mode_sort(lm) == irms_float_number) && (get_mode_size_bits(lm) >= get_mode_size_bits(sm)) ) return 1; } break; case irms_reference: /* do exist machines out there with different pointer lengths ?*/ return 0; case irms_internal_boolean: return mode_is_int(lm); default: break; } /* else */ return 0; } int values_in_mode(const ir_mode *sm, const ir_mode *lm) { if (sm == lm) return true; if (sm == mode_b) return mode_is_int(lm) || mode_is_float(lm); ir_mode_arithmetic larith = get_mode_arithmetic(lm); ir_mode_arithmetic sarith = get_mode_arithmetic(sm); switch (larith) { case irma_x86_extended_float: case irma_ieee754: if (sarith == irma_ieee754 || sarith == irma_x86_extended_float) { return get_mode_size_bits(sm) <= get_mode_size_bits(lm); } else if (sarith == irma_twos_complement) { unsigned int_mantissa = get_mode_size_bits(sm) - (mode_is_signed(sm) ? 1 : 0); unsigned float_mantissa = get_mode_mantissa_size(lm) + 1; return int_mantissa <= float_mantissa; } break; case irma_twos_complement: if (sarith == irma_twos_complement) { return get_mode_size_bits(sm) <= get_mode_size_bits(lm); } break; case irma_none: break; } return false; } ir_mode *get_reference_mode_signed_eq(ir_mode *mode) { assert(mode_is_reference(mode)); return mode->eq_signed; } void set_reference_mode_signed_eq(ir_mode *ref_mode, ir_mode *int_mode) { assert(mode_is_reference(ref_mode)); assert(mode_is_int(int_mode)); ref_mode->eq_signed = int_mode; } ir_mode *get_reference_mode_unsigned_eq(ir_mode *mode) { assert(mode_is_reference(mode)); return mode->eq_unsigned; } void set_reference_mode_unsigned_eq(ir_mode *ref_mode, ir_mode *int_mode) { assert(mode_is_reference(ref_mode)); assert(mode_is_int(int_mode)); ref_mode->eq_unsigned = int_mode; } static ir_mode *new_internal_mode(const char *name, ir_mode_sort sort) { ir_mode *mode = alloc_mode(name, sort, irma_none, 0, 0, 0); return register_mode(mode); } void init_mode(void) { obstack_init(&modes); mode_list = NEW_ARR_F(ir_mode*, 0); /* initialize predefined modes */ mode_BB = new_internal_mode("BB", irms_block); mode_X = new_internal_mode("X", irms_control_flow); mode_M = new_internal_mode("M", irms_memory); mode_T = new_internal_mode("T", irms_tuple); mode_ANY = new_internal_mode("ANY", irms_any); mode_BAD = new_internal_mode("BAD", irms_bad); mode_b = new_internal_mode("b", irms_internal_boolean); mode_F = new_float_mode("F", irma_ieee754, 8, 23); mode_D = new_float_mode("D", irma_ieee754, 11, 52); mode_Q = new_float_mode("Q", irma_ieee754, 15, 112); mode_Bs = new_int_mode("Bs", irma_twos_complement, 8, 1, 32); mode_Bu = new_int_mode("Bu", irma_twos_complement, 8, 0, 32); mode_Hs = new_int_mode("Hs", irma_twos_complement, 16, 1, 32); mode_Hu = new_int_mode("Hu", irma_twos_complement, 16, 0, 32); mode_Is = new_int_mode("Is", irma_twos_complement, 32, 1, 32); mode_Iu = new_int_mode("Iu", irma_twos_complement, 32, 0, 32); mode_Ls = new_int_mode("Ls", irma_twos_complement, 64, 1, 64); mode_Lu = new_int_mode("Lu", irma_twos_complement, 64, 0, 64); mode_LLs = new_int_mode("LLs", irma_twos_complement, 128, 1, 128); mode_LLu = new_int_mode("LLu", irma_twos_complement, 128, 0, 128); mode_P = new_reference_mode("P", irma_twos_complement, 32, 32); set_reference_mode_signed_eq(mode_P, mode_Is); set_reference_mode_unsigned_eq(mode_P, mode_Iu); /* set the machine specific modes to the predefined ones */ mode_P_code = mode_P; mode_P_data = mode_P; } ir_mode *find_unsigned_mode(const ir_mode *mode) { ir_mode n = *mode; /* allowed for reference mode */ if (mode->sort == irms_reference) n.sort = irms_int_number; assert(n.sort == irms_int_number); n.sign = 0; return find_mode(&n); } ir_mode *find_signed_mode(const ir_mode *mode) { ir_mode n = *mode; assert(mode->sort == irms_int_number); n.sign = 1; return find_mode(&n); } ir_mode *find_double_bits_int_mode(const ir_mode *mode) { ir_mode n = *mode; assert(mode->sort == irms_int_number && mode->arithmetic == irma_twos_complement); n.size = 2*mode->size; return find_mode(&n); } int mode_has_signed_zero(const ir_mode *mode) { switch (mode->arithmetic) { case irma_ieee754: case irma_x86_extended_float: return 1; case irma_none: case irma_twos_complement: return 0; } panic("invalid arithmetic mode"); } int mode_overflow_on_unary_Minus(const ir_mode *mode) { switch (mode->arithmetic) { case irma_twos_complement: return 1; case irma_ieee754: case irma_x86_extended_float: case irma_none: return 0; } panic("invalid arithmetic mode"); } int mode_wrap_around(const ir_mode *mode) { switch (mode->arithmetic) { case irma_twos_complement: case irma_none: return 1; case irma_ieee754: case irma_x86_extended_float: return 0; } panic("invalid arithmetic mode"); } int is_reinterpret_cast(const ir_mode *src, const ir_mode *dst) { ir_mode_arithmetic ma; if (src == dst) return 1; if (get_mode_size_bits(src) != get_mode_size_bits(dst)) return 0; ma = get_mode_arithmetic(src); if (ma != get_mode_arithmetic(dst)) return 0; return ma == irma_twos_complement; } ir_type *(get_type_for_mode) (const ir_mode *mode) { return get_type_for_mode_(mode); } size_t ir_get_n_modes(void) { return ARR_LEN(mode_list); } ir_mode *ir_get_mode(size_t num) { assert(num < ARR_LEN(mode_list)); return mode_list[num]; } void finish_mode(void) { obstack_free(&modes, 0); DEL_ARR_F(mode_list); mode_T = NULL; mode_X = NULL; mode_M = NULL; mode_BB = NULL; mode_ANY = NULL; mode_BAD = NULL; mode_F = NULL; mode_D = NULL; mode_Bs = NULL; mode_Bu = NULL; mode_Hs = NULL; mode_Hu = NULL; mode_Is = NULL; mode_Iu = NULL; mode_Ls = NULL; mode_Lu = NULL; mode_b = NULL; mode_P = NULL; mode_P_code = NULL; mode_P_data = NULL; }